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Abstract
High performance diarisation is a necessity for a variety of ap-
plications, and the task has been studied extensively in the con-
text of broadcast news and meeting processing. Upon intro-
duction of the task in NIST led evaluations, diarisation error
rate (DER) was introduced as the standard metric for evalua-
tion, and it has been consistently used to compare systems ever
since. DER is a frame based metric that does not penalise for
producing many short segments. However, practical systems
that require diarisation input are typically not able to cope well
with such artefacts. In this paper we illustrate the need for an
alternative metric focussing on segments, instead of duration
or boundaries only. We propose a segment based F-measure,
which specifically addresses issues such as reference errors,
matching start and end boundaries, and speaker pairing. The
performance of the metric is analysed in the context of state-
of-the-art systems and compared with other existing metrics. It
is shown to give a deeper insight into the segmentation quality
over the standard metrics, and thus better value for to under-
stand impact on follow on tasks such as ASR.
Index Terms: speaker diarisation, diarisation error rate, bound-
ary information, purity measures

1. Introduction
Speaker diarisation is an important task for audio indexing, and
a prerequisite for other speech processing tasks such as auto-
matic speech recognition (ASR) [1, 2]. The objective is to split
the audio into speech segments which are associated with a sin-
gle speaker, and to identify among the set of segments those
that are spoken by the same speaker. The difficulty of the task
is not only to group the speakers correctly, but also to find the
correct number of clusters (i.e. speakers). Diarisation has been
well studied over the years, research has been performed on
telephone [3], meeting [4] and broadcast media data [5], for ex-
ample. Several toolkits are available in the public domain for
this task, however most are designed to perform well for a spe-
cific type of data [6, 7, 8].

NIST [4] established the task and the diarisation error rate
(DER) [9] for use in the speaker diarisation evaluations, con-
ducted during the years 2002-9. It has been widely adopted to
be the standard metric for evaluating systems, and is based on
detecting missed speech, false alarms and speaker error in terms
of time only. Alternative methods for assessment of diarisation
also exist, such as boundary centric methods that focus on eval-
uating the segmentation stage, such as the Dynamic Program-
ming Cost [10]. The F-measure has also been used to evaluate
the number of inserted, deleted and matched boundaries [11].
The clustering stage can be evaluated using speaker and cluster
purity measures [12]. The DER metric obfuscates several sig-
nificant properties of system outputs that are relevant for prac-
tical tasks, and therefore the search for alternative metrics is an
important research question.

One issue arises from vagueness of what constitutes a seg-
ment. Typically, references are created by humans who will
choose pauses where it is semantically meaningful. Therefore
sentences (or “spurts” [13]) can be seen more as semantic units.
This is done for a reason – it makes no sense to listen to frag-
mented sentences for a person. Similarly, downstream applica-
tions such as translation or summarisation require semantically
meaningful fragments. DER avoids that issue by using frame
level correctness rather than segmental correctness, allowing for
completely fragmented output without any penalty.

The second weakness of DER is that it does not allow for
ambiguity in reference and output. As even for manual labellers
it is not completely clear where boundaries have to be placed de-
cisions need to be lenient and allow for correctness ranges, for
example in the form of confidence on boundary location. DER
does not accomodate this and therefore leniency is expressed by
deletion of data, as further outlined below. Hence highly con-
versational speech becomes easier to detect although in fact the
segments are harder to find and overlap plays a big role.

Both weaknesses have to do with the lack of decision ori-
entation in assessing diarisation output. For this reason we pro-
pose a metric based on the F-measure, a measure of accuracy,
in terms of segments1.

2. Existing metrics for diarisation
The DER is the standard and most commonly used evaluation
metric. Others include the DPC and boundary F-measure which
evaluates segment boundaries, and speaker and cluster purity
measures which evaluate the speaker clustering.

2.1. Diarisation error rate
DER measures the amount of time not accurately assigned to
speech, a specific speaker or non-speech, and is widely adopted
across the field [1, 2, 9]. It is calculated using the equation:

DER =

S∑
s=1

dur(s)(max(Nref (s), Nhyp(s))−Ncorrect(s))

S∑
s=1

dur(s)Nref

(1)
where S is the number of speaker segments, in which the refer-
ence and the system output file contain the same speaker pair,
and dur(s) is the length of a segment. The Nref and Nhyp rep-
resent the numbers of speakers in the reference and hypothesis
segment and Ncorr is the amount of correctly matched speak-
ers [14]. It is simply the sum of missed time error (MS), false
alarm error (FA) and speaker error (SE). Missed speech refers
to reference speech detected as silence, false alarm is reference
silence detected as speech, and speaker error measures the per-
centage of scored time in which a speaker label is assigned to
the wrong speaker. A “collar” around the reference boundaries

1http://mini.dcs.shef.ac.uk/resources/sw/dia segmentfmeasure
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Figure 1: Example of DER scoring, where MS, FA and SE are
missed speech, false alarm and speaker error time segments.
There is no hypothesised segment which represents the reference
yet there is only small MS, FA and SE and thus low DER.

excludes that region from scoring, thus showing the uncertainty
in the reference annotation.

There are several disadvantages to the DER. Firstly, the use
of the collar is problematic. The standard of 0.25 seconds is
equivalent to 0.5 seconds around the boundary. Assuming 3
words a second, this is at least one whole word. Furthermore,
data is removed from scoring. As will be illustrated later on, this
can amount to half of the overall data. Secondly, the reference
speakers are mapped to hypothesised speaker labels by select-
ing the mapped pair with the maximum amount of coinciding
time. This gives priority to large clusters and can ignore small
clusters. The third and arguably biggest issue is that the number
of segments do not feature in the metric. This implies that ei-
ther the introduction of short inter-segment gaps or the bridging
of short gaps hardly gets penalised. In Figure 1, multiple seg-
ments have been hypothesised for one reference segment, and
(if reference speaker SA is mapped to hypothesised speaker S1)
there is a segment with an incorrect speaker label. However,
as the majority of the reference speech has been found and has
the correct speaker mapped label, the DER will be a reasonable
result. It measures frame by frame instead of error based on
correctly detected speech segments [15].

2.2. Boundary evaluation
Segment boundaries are important information on segmenta-
tion. The Dynamic Programming Cost (DPC), as defined in
[10], aligns sequences of boundary information (the reference
and the hypothesis output) using the absolute time difference
between the two as a cost. DPC is measured in milliseconds
per reference boundary, and is found by dividing the cost by
the number of reference boundaries. An F-measure can be cal-
culated which gives a score involving the number of matched,
inserted and deleted boundaries in terms of precision (PRC) and
recall (RCL) [11]. Precision refers to when a true boundary is
matched and recall refers to when a hypothesis boundary cor-
rectly corresponds to a boundary in the reference:

PRC =
Nmat

Nmat +Nins
, RCL =

Nmat

Nmat +Ndel
(2)

F = 2
PRC ∗RCL

PRC +RCL
(3)

where Nmat, Nins and Ndel are the number of matches, inser-
tions and deletions respectively.

A problem with this boundary evaluation is that deletions
and insertions are treated equally. Arguably in a speaker diari-
sation system it is worse to produce misses than false alarms, as
these are unrecoverable portions of speech. As for the DPC, the
metric will give most information if the units to be assessed are
of approximately equal length. However, for diarisation this is
often not the case.

This method does penalise split segments in terms of in-
creasing the number of insertions, but it does not consider what
“type” of boundaries the matches are. For example, looking to
the left and the right of the boundary, it could be NONSPEECH-
SPEECH, SPEECH-NONSPEECH or SPEECH-SPEECH (dif-
ferent speakers, referred to as a speaker change). It finds the
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Figure 2: Example of DPC and F-measure scoring. This shows
the initial hypothesised boundary as a deletion, d, several in-
serted boundaries, i and an incorrectly matched reference end
boundary, m.

closest boundary in time without checking the type of boundary.
Figure 2 shows an example of a match for the second reference
boundary but it should be considered incorrect due to the types.
However, the metric is easily changed to penalise any matches
which do not have the same type of boundary and this updated
boundary F-measure is used for the rest of this paper.

2.3. Purity measures
Purity measures are usually used for general clustering algo-
rithms but can be applied to speaker clustering in the form of
cluster purity and speaker purity. Cluster purity describes how
a cluster is contained to only one speaker and speaker purity
describes how well a speaker is constricted to only one clus-
ter. They do not give detailed information of the segmentation
performance. They are described in more detail in [12] where
ni. is the number of frames in cluster i, n.j is the number of
frames uttered by speaker j, nij is the frame count in cluster i
spoken by speaker j, Nc is the cluster count, Ns is the number
of speakers and N is the number of frames. Cluster purity, pi.,
of cluster i and the average cluster purity, acp, are:

pi. =

Ns∑
j=1

n2
ij

n2
i.

, acp =
1

N

Nc∑
i=1

pi.ni. (4)

Secondly, the speaker purity, p.j , of speaker j and average
speaker purity, asp, are:

p.j =

Nc∑
i=1

n2
ij

n2
.j

, asp =
1

N

Ns∑
j=1

p.jn.j (5)

An overall purity calculation combines both cluster and speaker
purity measures:

K =
√
acp ∗ asp (6)

which is used as a method to evaluate different systems.
Speaker and cluster purity is again frame based and de-

scribes the spread of speakers across clusters and vice versa.
It does not show the user whether the audio has been segmented
correctly, meaning it must be used alongside another metric to
evaluate the segmentation.

3. Segment F-measure
As outlined above, existing metrics only allow to focus on very
specific aspects while ignoring others. In this work we propose
to use complete segment match as the base, where a segment is
correct if it matches the boundaries of the reference. Similar to
the methods for boundary detection (outlined in §2.2), precision
and recall, and consequently F-measures can be used to assess
performance. Such a segment-oriented metric allows to address
the issues raised with other metrics.

Performance is evaluated in terms of matched segments and
each reference segment is treated individually. A hypothesised
segment is matched to a reference segment if its start and end
boundaries lie within reach of the reference segment’s start and
end boundaries, and the speaker labels are equivalent. It com-
pensates for small errors in references, and there are three differ-
ent approaches to allow for boundary leniency. The metric also
includes a segment-based speaker mapping method and deals
with overlapping segments.
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Figure 3: Three different distributions used for boundary match-
ing: A) uniform, B) triangular and C) Gaussian. The verti-
cal solid line represents the reference boundary and the verti-
cal dashed line represents where the hypothesised boundary has
fallen, and c and p are the collar and padding respectively.

3.1. Reference errors
Reference timings can be manually created or come from align-
ment of a transcript. Either method would produce a certain
amount of discrepancy between the timings found and the true
timings. In DER, this is controlled by applying a collar around
the reference boundaries where the score is ignored, leading to
loss of scoring time. The segment based method allows to de-
fine a range in which the boundary should fall. The range value
(also collar) is thus an expression of reference uncertainty with-
out loss in scoring power. Initially, adjacent reference segments
with a limited time gap and same speaker labels can be merged
as a smoothing method.

3.2. Matching start and end boundaries
For each reference segment, a hypothesis segment is to be found
with equivalent start and end times. As mentioned, a collar can
be applied to the reference boundary times (on either side) al-
lowing for the hypothesis boundaries to fall within this region.
This is equivalent to the assumption that the actual boundary is
represented by a uniform probability density function (pdf) of
certain width around the boundary. Consequently, one can es-
timate the probability of the hypothesis segment falling into a
region using uniform or other distributions. The probabilities
for start and end boundaries can be multiplied and a threshold
used to decide whether the segment matches or not.

Distributions tested include uniform, triangular and Gaus-
sian and are depicted in Figure 3. The collar represents the
width, or variance for the Gaussian distribution. An optional
padding variable can be applied which allows for larger prob-
abilities and introduces more leniency. For the uniform case
padding would only turn the decision into a different effective
boundary and hence is reduced to a simple match or not.

3.3. Mapping speaker labels
NIST scoring pairs reference and hypothesised speakers based
on time, by mapping the speaker and label with the overall max-
imum time matched until all reference speakers have an equiv-
alent hypothesised label if possible. The proposed metric only
considers reference speakers and hypothesised labels which oc-
cur in segments with matching start and end boundaries. Refer-
ence segments without matches are ignored for this stage as the
speaker labelling may not be reliable. For example, if reference
speakers SA and SB exist and hypothesised speaker labels S1

and S2 exist, the probability, or score, that a reference speaker,
SA, is mapped to hypothesised label, S1, given all the observa-
tions can be expanded:

P (r = SA, h = S1|O) =

P (h = S1|r = SA, O)P (r = SA|O)
(7)

Both parts could be represented in different ways, either by time
(amount of coinciding time between matched segments) or the
number of segments. As this F-measure is based on segment

SA  S1
SB  S2

50

30 40

Ref Hyp

Figure 4: Example of sub optimality of greedy speaker mapping.
The optimal solution (SA-S2,SB-S1) gives a lower cost.

matches, a segment-based speaker mapping is chosen. A time-
based method is not used as a very long but incorrectly clustered
segment can lead to suboptimal assignment.

Instead of the greedy search, a full search is implemented
in order to find the globally optimal mapping of reference to
hypothesised speakers. In a first step, all possible matchings
between reference speakers and hypothesised clusters and their
scores are found. Next, for every pair with a score found, the
possible combinations of other pairs of speakers are found and
the scores of any ignored pairs are counted as a cost, or er-
ror, for this combination of pairs. Finally, the combination of
speaker and label pairs which produce the lowest cost is cho-
sen to be the correct speaker mappings. Figure 4 illustrates how
this improves over methods based on greedy search. The greedy
method would select SA-S1 to be correct as it has the highest
score, removing these two labels from further mappings mean-
ing both SB and S2 would be unmatched labels (and thus both
are an error). However, full search looks at all combinations and
costs: where SA-S1 pairing would have a cost of 30+ 40 = 70
with two unmatched speakers, and the alternative would be SA-
S2 with cost 50 and SB-S1 with cost 0, an overall cost of 50 +
0 = 50 making it the more optimal combination.

3.4. Multiple hypothesised segments
It can happen that multiple hypothesised segments can be asso-
ciated with the same reference segment. If they are not overlap-
ping then smoothing is carried out. Any adjacent segments with
a limited gap can be merged (smoothing as on the reference).
If this produces a single segment with matching boundaries and
equivalent speaker label then it is considered a match.

If overlapping, the hypothesis segment with the matching
boundaries and speaker label is chosen to be correct and the
other hypothesised segments are considered as insertions. If
more than one segment matches with boundaries, the segment
with the equivalent speaker label is chosen to be correct.

4. Evaluation
In this section we compare results for the segment F-measure
(sF) with DER, DPC, boundary F-measure (bF) and K, the over-
all purity measure. We evaluate across two data domains each
using two speaker diarisation systems. Speaker diarisation can
be a prerequisite for tasks such as ASR, so a good understanding
of the segmentation quality is vital.

4.1. Data and systems
The first dataset, RT07, is single channel meeting data. It con-
sists of 35 speakers across 8 meetings recorded in four different
meeting rooms and was collected for the NIST Rich Transcrip-
tion 2007 evaluation [16]. It has been used with two different
Deep Neural Network (DNN) based systems (RT07.1, RT07.2),
DNN segmentation followed by adaptation using a pre-trained
DNN to separate speakers [17, 18]. The second is a media
broadcast programme from the BBC where there is always four
speakers, a host and three guests. It has been used with SHoUT
[8] which uses an unsupervised model training regime (BBC.3)
and a system using DNN segmentation and alignment on the in-
dividual head microphone (IHM) channels, resulting in an sin-
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Figure 5: Using various collars, values from RT07.1 individual files are shown for A) segment F-measure, B) DER and C) scored time
used in DER. Plots D) and E) show the uniform segment F-measure and DER scores respectively for the BBC.4 system.

gle distant microphone (SDM) output (BBC.4).

4.2. Results
The sF metric can be used to evaluate speech activity detection
(SAD) as well as speaker diarisation (DIA). For SAD, before
any preprocessing of merging adjacent segments with equiva-
lent speakers, the speaker labels are removed (treated as a single
one, “speech”) and any two segments which overlap are treated
as one. This will of course give higher scores in comparison to
the DIA scores as the speaker labels are ignored.

Overall scores for SAD and DIA are shown in Table 1. The
overall sF scores are found by weighting each file by the num-
ber of reference segments. There is a clear difference between
the sF and the other metrics. For SAD, three systems achieve
similar sF scores whereas the DER is not correlated. The same
is true for DIA, the two RT07 systems achieve similar sF scores
but the DER varies by 10%. This backs our argument that the
DER is misleading in terms of segmentation evaluation. The
BBC.3 system provides poor segmentation shown in the sF,
0.4%, however the DPC and bF both fail here giving improved
scores, 0.7 ms and 80.4% respectively. The purity, K, also fails
to show the poor segmentation.

The uniform (u-sF), triangular (t-sF) and Gaussian (g-sF)
distributions at boundaries are used for adding leniency when
matching. The thresholds for t-sF and g-sF were tuned sepa-
rately and the padding applied is 0.01 seconds, 20 ms around
the hypothesised boundary. For both SAD and DIA, the t-sF
greatly improves the scores allowing for large leniency, for ex-
ample, for DIA RT07.1 increases from 55.5% to 75.6% and the
poor performing BBC.3 system increases from 0.4% to 5.8%.
The g-sF improves for DIA in a much smaller degree and in
some SAD cases, it drops slightly, e.g, BBC.4 goes from 76.3%
for the u-sF to 74.7%. In the final section of Table 1, scores for
individual files with roughly the same DER of 17% are shown.
The sF scores differ in these cases, highlighting differences not
observable in other metrics, particularly the DER, as their eval-
uation does not consider the segmentation quality.

Figure 5 displays the effects on u-sF and DER scores for
RT07.1 and BBC.4 under a changing collar. The middle plot is
the amount of scored time evaluated in the DER, as the collar
increases more time is being removed and not evaluated on. For
most files this means a reduction of data by more than 50% at
the standard collar of 0.25 seconds. Arguably difficult, highly
variable sections of the data have been removed at this point. As
a consequence of the data change the DER itself drops, by up to
20% absolute, and in some cases halves the error. One can fur-
ther observe that for DER the rank ordering between different

File u-sF t-sF g-sF DER DPC bF K
SAD

RT07.1 76.6 85.2 80.8 2.6 0.2 94.8 -
RT07.2 74.7 79.8 74.3 14.7 0.3 90.6 -
BBC.3 0.4 5.0 0.2 9.9 1.4 79.2 -
BBC.4 76.3 78.9 74.7 2.0 0.2 94.5 -

DIA
RT07.1 55.5 75.6 63.4 10.5 0.3 86.6 68.6
RT07.2 55.5 79.6 57.5 21.9 0.2 84.2 73.9
BBC.3 0.4 5.8 0.7 21.4 0.7 80.4 63.3
BBC.4 38.6 46.6 40.6 11.7 0.4 84.6 72.6

DIA - INDIVIDUAL FILES
RT07.1c 39.5 71.0 50.2 17.8 0.3 69.8 57.6
RT07.2d 58.5 82.9 60.9 17.2 0.2 76.6 75.9
BBC.3x 0.4 7.1 0.7 17.9 0.9 14.2 66.5
BBC.4t 33.1 41.9 35.3 17.7 0.4 67.4 63.5

Table 1: Overall SAD and DIA scores for the four systems, in-
cluding selected individual files, where u-sF, t-sF and g-sF are
the sF scores using a uniform, triangular and Gaussian bound-
ary distribution respectively. All scores use a 0.1 second collar.

data elements can change, in the case of BBC.4 quite consid-
erably. In contrast, for sF both for RT07.1 and BBC.4 the rank
ordering remains stable throughout collar change. Furthermore,
the error values become stable much sooner, at approximately
the precision level that the reference was generated. Rank or-
dering is important for comparison of systems as the smoothing
parameters should not affect the outcome of comparisons.

5. Conclusion
This paper presented an overview of diarisation assessment
metrics and provided an analysis of their strength and weak-
nesses. The shortcoming of the key metric, diarisation error
rate, was demonstrated in experimental results on different tasks
and with different systems. Amongst others the main shortcom-
ing is insensitivity to segmentation errors. We have introduced
a new metric that incorporates both assessment of speaker er-
ror and highlights issues with segmentation. The result is a
more stable performance assessment and rank ordering of re-
sults, which will allow for more meaningful assessment of diari-
sation performance in conjunction with other downstream tasks.

The authors would like to thank Jana Eggink and the BBC. This work
was supported by the EPSRC Programme Grant EP/I031022/1 Natural
Speech Technology (NST).
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