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ABSTRACT

In recent years, trained feature extraction (FE) schemes based on
neural networks have replaced or complemented traditional ap-
proaches in top performing systems. This paper deals with FE
in multilingual scenarios with a target language with low amount
of transcribed data. Continuing our previous work on multilin-
gual training of Stacked Bottle-Neck Neural Network FE schemes,
we concentrate on improving the discriminatively trained Region-
Dependent Transforms. We show that multilingual training of RDT
can be implemented by merging statistics from several languages.
In our case we used up to 11 source languages to build a FE which
generalize well for a new language. This allows us to build a strong
bootstrapping model for the final ASR system. The results are
produced on IARPA Babel data.

Index Terms— Automatic speech recognition, Region-Dependent
Transforms, Multilingual speech recognition, Feedforward neural
networks

1. INTRODUCTION

Quick delivery of ASR system for a new language is one of the chal-
lenges in the community. Hand in hand with this requirement comes
the limitation of available resources. Such scenario calls not only
for automated construction of systems, that have been carefully de-
signed and crafted “by hand” so far, but also for effective use of
available resources. Unfortunately, the data collection and annota-
tion is the most time- and money-consuming procedure. It naturally
raises an idea to borrow the information from other sources. As
all human beings share the same vocal tract architecture, automatic
systems should be able to have the low-level components (feature
extraction) built and trained on various sources of data.

ASR systems have been using a variety of transforms to ad-
just features, model parameters, or both, for better matching of the
system to the target data. Among these, Region Dependent Trans-
forms (RDT) [1, 2] are giving good performance due to discrimina-
tive training. Moreover they are effective in discriminative fusion of
features. A typical front-end of our GMM system [9] consists of two
stages:
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1. Neural network (NN) based Bottle-Neck (BN) [3] features
and standard spectral based features (PLP-HLDA) [9] are ex-
tracted from every speech frame.

2. The two streams of features are fused using discriminatively
trained Region Dependent Transforms (RDT).

This paper investigates RDT training in the framework of
IARPA BABEL, where the goal is to quickly train keyword spotting
systems1 for new languages with minimum in-domain resources.
The program already encouraged the research in training multilin-
gual systems and their porting to new languages [3, 4, 5]:

Our previous work [7] studied the possibility to train a multilin-
gual NN, which would be able to extract features for a new language.
Several approaches to create the target phoneme set for the multi-
lingual training were explored. The best and safest approach was
found in splitting the last softmax layer into several blocks where
each block accommodates training targets from one language [8].

Note that the first study of portability of Neural Network (NN)
based features was done in [6], where NNs trained on English data
were applied to Mandarin and Levantine Arabic to produce proba-
bilistic features. Consistent word error rate (WER) reduction was
observed for both languages. Unlike in IARPA BABEL program,
however, the amount of training data for each language was sufficient
for training good neural networks (100 and 70 hours respectively).

This paper extends the idea of multilingual training also to train-
ing RDT. Some initial experiments were already presented in [9].
Fully language-independent multilingual feature extraction should
generate a better starting point when the system is ported to a new
language. Naturally, all of the trainable front-end blocks should be
trained in multilingual fashion.

2. REGION DEPENDENT TRANSFORM

In the RDT framework, an ensemble of linear transformations is
trained, typically using the discriminative Minimum Phone Error
(MPE) criterion [10]. Each transformation corresponds to one region
in partitioned feature space. Each feature vector is then transformed
by a linear transformation corresponding to the region the vector be-
longs to. The resulting (generally nonlinear) transformation has the
following form:

FRDT (ot) =

N
X

r=1

γr(t)Arot, (1)

whereAr is linear transformation corresponding torth region, and
γr(t) is probability that feature vectorot belongs torth region.

1Due to correlation between ASR and KWS system, this work evaluate a
performance only on ASR level
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Fig. 1. Region Dependent Transform.

The probabilitiesγr(t) are typically obtained using a GMM (pre-
trained on the input features) as mixture component posterior prob-
abilities. Usually, RDT parametersAr and GMM-HMM acoustic
model parameters are alternately updated in several iterations. While
RDT parameters are updated using discriminative minimum phone-
error (MPE) criterion, the acoustic model parameters are typically
maximum likelihood (ML) trained on top of the features forwarded
through the current RDT transformation [1],[2].

RDT can be seen as a generalization of proposed feature-MPE
(fMPE) discriminative feature transformation. The special case of
RDT with square matricesAr was shown [2] to be equivalent to
fMPE with offset features as described in [11]. From the fMPE
recipe [1], we have adopted the idea of incorporating context infor-
mation by consideringγr(t) corresponding not only to the current
frame but also to the neighboring frames. From our experience, such
incorporation of contextual information leads to significantly better
results compared to the RDT style proposed in [2], where feature
vectors of multiple frames were stacked at the RDT input. Therefore,
our RDT configuration (figure 1) is very similar to the one described
in the fMPE recipe [1].

2.1. Multilingual training of RDT

As was already mentioned, RDT parameters,Ar, together with
GMM-HMM acoustic model parameters are iteratively updated dur-
ing RDT training. In our multilingual setting, however, we have
several acoustic models one for each target language. The idea of
multigual RDT training is to train single RDT model as a non-linear
feature transformation, which is to be shared by all the acoustic
models (or all the target speech recognizers). RDT model relies on
the GMM defining the regions throughγr(t). In our experiment, we
show that such GMM can be trained in multilingual fashion on data
from several languages.

In our implementation, we use simple batch gradient descent al-
gorithm for updating RDT parametersAr. Alternatively, L-BFGS
algorithm can be used as suggested in [2]. From our experience,
however, gradient descent usually provides better performing sys-
tem (although its convergence is much slower). The gradients of the
MPE objective with respect to RDT parametersAr can be calculated
as described in [2] (eq. 13). In our multilingual setting, gradients are
calculated one for each target language on the training data and using
the acoustic model of the corresponding language. All the language

Y1 Langs. CA PA TU TA VI
FLP hours 65.0 64.7 56.6 44.1 53.2
Y2 Langs AS BE HA LA ZU Tam
FLP hours 46.7 53.6 55.0 71.6 57.8 72.7
Y3 Langs TP
VLLP hours 3.0

Table 1. Amounts of data used for training.

specific gradients are simply averaged into single gradient and used
in a standard gradient descent algorithm to update the RDT parame-
tersAr.

Our experiments show that RDT trained in such multilingual
fashion can not only be shared by all the target languages that were
used for its training, but it can be also successfully used as a feature
transformation for a new unseen language.

3. EXPERIMENTAL SETUP

3.1. Data

The IARPA Babel Program data simulates a case of what one could
collect in limited time from a completely new language. It consists
mainly of telephone conversation speech, but scripted recordings as
well as far field recordings are present too.

The following language collection releases were used in this
work (sorted by years of BABEL Program):

• Year 1 (Y1): Cantonese IARPA-babel101-v0.4c (CA), Pashto
IARPA-babel104b-v0.4aY (PA), Turkish IARPA-babel105-
v0.6 (TU), Tagalog IARPA-babel106-v0.2g (TA), Viet-
namese IARPA-babel107b-v0.7 (VI)

• Year 2 (Y2): Assamese IARPA-babel102b-v0.5a (AS), Ben-
gali IARPA-babel103b-v0.4b (BE), Haitian Creole IARPA-
babel201b-v0.2b (HA), Lao IARPA-babel203b-v3.1a (LA),
Zulu IARPA-babel206b-v0.1e (ZU), Tamil IARPA-babel204b-
v1.1b (Tam)

• Year 3 (Y3): only TokPisin IARPA-babel207b-v1.0c (TP)
was used.

Details about the languages can be found in [3]. Two main train-
ing scenarios were defined for each language – Full Language Pack
(FLP), where all collected data was available for training – about
100 hours of speech; and Limited Language Pack (LLP) consisting
only of one tenth of FLP. In year 3, the amount of training data for
limited set was further decreased to size about 3h. This set is called
Very Limited Language Pack (VLLP). In this condition, multilingual
training and WEB text data collection were allowed on contrary to
previous years where the acoustic model (AM) and language model
(LM) training data were strictly bound to the respective Language
Pack. Moreover, in year 3, pronunciation dictionaries were not pro-
vided and participants had to rely on graphemes in all conditions.

4. STRUCTURE OF ASR SYSTEMS

4.1. PLP system

Our speech recognition system was HMM based on cross-word tied-
states triphones, it was trained from scratch using standard maximum
likelihood training.

For the initial system, Mel-PLP features were generated (13 co-
efficients). Deltas, double- and triple-deltas were added, so that the
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Fig. 2. Scheme of Stacked Bottle-Neck Neural Network feature ex-
traction.

feature vector had 52 dimensions. Cepstral mean and variance nor-
malization was applied with the means and variances estimated per
conversation side. HLDA was estimated with Gaussian components
as classes to reduce the dimensionality to 39. According to our previ-
ous experiments [9] the HLDA transform does not need to be trained
on the target language, therefore the Tamil HLDA was selected for
the further experiments.

4.2. Stacked Bottle-Neck feature extraction

The NN input features had 24 log Mel filter bank outputs concate-
nated with different fundamental frequency features: “BUT F0” had
2 coefficients (F0 and probability of voicing), “snack F0” was just a
single F0 and “Kaldi F0” had 3 coefficients (Normalized F0 across
sliding window, probability of voicing and delta). Fundamental fre-
quency variation (FFV) had a 7 dimensional vector. Therefore, the
whole feature vector had 24+2+1+3+7=37 coefficients (see [12] for
details on fundamental frequency features).

Conversation-side based mean subtraction was applied and 11
consecutive frames were stacked. Hamming window followed by
DCT consisting of 0th to 5th bases were applied on the time tra-
jectory of each parameter resulting in 37×6=222 coefficients at the
first-stage NN input (see Fig. 2).

The first-stage NN had four hidden layers with 1500 units each
except the BN layer. The bottle-neck (BN) layer was the third hid-
den layer and its size is 80 neurons. Its outputs were stacked over 21
frames (+/-10) and down-sampled (every 5th is taken) before enter-
ing the second-stage NN. This NN had the same structure and sizes
of hidden layers as the first-stage NN except for the BN layer with
30 neurons. The neurons in both BN layers had linear activation
functions as they were reported to provide better performance [13].

The multilingual Stacked Bottle-Neck (SBN) NNs in this work
were trained with the last layer – softmax – split into several blocks.
Each block accommodates training targets from one language [8].
Context-independent phoneme states were used as the training tar-
gets. The NNs were trained on FLPs from Y1 + Y2 languages, ex-
cluding Tamil2 (10 languages). The NN targets were monophone
states obtained by forced alignment of training data with the initial
PLP systems. Bottle-neck features generated in this way are further
denoted “MultNN”.

5. EXPERIMENTAL RESULTS

5.1. Multilingual RDT on seen language

The RDT were trained on top of concatenated
PLPHLDA+MultNN features stream. First, the initial language spe-
cific GMM-HMM acoustic models were estimated by Single-Pass-
Retraining (SPR). The shared RDT transforms were initialized as

2it was the last language delivered in Y2, therefore significant portion of
the work was done without it.

Training data GMM WER[%]

Vietnam Vietnam - 125G 53.3
Vietnam Multilingual - 125G 53.3
Y1 Multilingual - 125 53.6
Y1 Multilingual - 500 53.7
Y1 Multilingual - 1000 53.9
Y1+Y2 Multilingual - 125G 53.2

Table 2. Multilingual RDT tested on Vietnamese FLP - one of the
training languages.

identity matrices forAr matrices corresponding to central frame and
zero matrices otherwise (see Fig. 1). The RDT parameters and the
new language specific acoustic models were iteratively trained until
convergence as described in section 2.1.

Table 2 compares results obtained with multilingually trained
RDT and RDT trined only on the Vietnamese target language. In this
case, the system is trained on FLP, which means that there is already
enough Vietnamese data to train RDT well. Therefore we do not
expecting much improvement from the multilingual RDT training.
Instead, we want to verify that the multilingual training generalizes
well to any of the target languages without causing much perfor-
mance degradation compared to the language specific training.

For the first two rows, the RDT parameterAr are trained only
on Vietnamese data, except that the GMM defining the regions (pos-
teriorsγr(t)) is trained on multilingual data in the second row. As
the results are identical, we conclude that it is save to use the ”mul-
tilingual regions” in the following experiments.

The following lines shows results with all the RDT parameters
trained in multilingual fashion. When training RDT only on Y1 data
(5 languages) small degradation of 0.3% is observed when using the
same number of regions (125 GMM components). As we are now
effectively training on more data, we experimented with larger num-
ber of regions resulting in lager number of trainable RDT parameters
(and more fine partitioning of the feature space). However, no gain
was observed with the larger models compared to the configuration
(125 components) that was also optimal for the monolingual train-
ing.

Training RDT on both Y1 and Y2 data gives 0.4% gain with re-
spect to training only on Y1. Small improvement of 0.1% is obtained
even over the language-specific system.

5.2. Application of multilingual RDT to unseen language

In the following experiments, we investigate how RDT trained on
Y1 and Y2 languages generalizes to a new unseen language, where
amount of training data is severally limited. System for TokPisin
(one of the languages from Y3 languages) is trained on Very Limited
Language Pack (VLLP) which was about 3h of data. The RDT input
features (PLPHLDA+MultNN) were processed through RDT pre-
trained on Y1+Y2 data The initial PLP based GMM-HMM system
was retrained using SPR on the RDT transformed features.

The first two rows of Table 3 shows that training RDT on the
target language data give better performance compared to borrow-
ing the pre-trained RDT from a single different language even if the
amount of the training data is much smaller (more than an order of
magnitude less data). On the other hand, use of the multilingual
RDTs results to significant gains. Relatively small gain (0.1% ab-
solute) was obtained form training RDT on 11 (Y1+Y2) languages
compared to using only 5 (Y1) languages. The configuration with
125 GMM regions and RDT trained on 11 languages is used in the
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Training data GMM WER[%]

TokPisin VLLP TokPisin VLLP - 125G 51.2
Tagalog FLP Tagalog FLP - 125G 52.0
Y1 Multilingual - 125G 50.3
Y1+Y2 Multilingual - 125G 50.2

Table 3. Multilingual RDT on TokPisin.

Initial features Unadapted ML Full system

PLP 70.0 44.9
MultNN - 10Lang 51.9 44.1
MultRDT 50.0 43.7

Table 4. WER [%] obtained with different flat-start features on
TokPisin language.

following experiments and denoted as “MultRDT”.

5.3. Building the complete system

Table 4 shows results for our experiment, where different features
were used to train the TokPisin VLLP HMM system from scratch.
The system only differ in the features used for their traing. Oth-
erwise the whole system architecture and training procedure is the
same. The first column in the table corresponds to ML trained un-
adapted system, which is obtained in an early stage of training the
full system. The second column shows results for the full speaker
adapted MPE trained GMM-HMM ststem making also use of the
additional more advanced techniques:

• Fine-Tuning of Multilingual NN on target language data [3]

• Semi-Supervised Training of NN to deal with the problem of
small amount of transcribed data (about 70h of the data can
be used for unsupervised training) [16].

• The second stage NN of the SBN architecture (see Fig. 2) was
trained on speaker-adapted features [12].

In the case of the unadapted ML trained system, we obtain very
poor performance with the simple PLP features. Large improvement
(18% absolute) is obtained when the previously proposed MultNN
features are used. Additional 1.9% absolute improvement is ob-
tain from applying the pre-trained multilingual RDT transformation
on top of PLPHLDA+MultNN features. The NN based features
and RDT transforms are trained to learn acoustics clues, therefore
straightforward Maximum Likelihood (ML) flat-start models per-
forms significantly better than traditional spectrum-based PLP fea-
tures. Moreover, the NN-based features provides significantly faster
convergence with less Gaussians due to the emergence of articula-
tory clusters [14].

As expected, smaller gains are observed for the full adapted and
discriminatively trained system. Still, the best performance is ob-
tained with the features extracted using the pretrained multilingual
BN features and multilingual RDT transform. Note also that it is
very easy and fast to train the unadapted ML system (training takes
few hours) compared to the full system, which takes days to train.

6. CONCLUSION

This paper presented our further steps in the development of a fea-
ture extraction scheme easily transferable to a new language with
severely limited training data. In addition to multilingual training of

the bottle-neck neural networks explored previously, we have shown
that similarly trained RDT can be beneficial for adapting the system
to the target language and domain and for discriminative fusion of
complementary feature streams. It is encouraging to see that the ad-
vantages brought by RDT do not vanish in the full system including
a variety of techniques pushing the performance up, but that multlin-
gual RDT initialization still contributes a solid 0.4% absolute im-
provement.
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tive bottleneck network features for LVCSR,” inProceedings
of ASRU 2011, 2011, pp. 42–47.

[14] Ngoc Thang Vu, Jochen Weiner, and Tanja Schultz, “Investi-
gating the learning effect of multilingual bottle-neck features
for ASR,” in INTERSPEECH 2014, 15th Annual Conference
of the International Speech Communication Association, Sin-
gapore, September 14-18, 2014, 2014, pp. 825–829.
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