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ABSTRACT

In this paper, we describe a multi-task learning approach for acous-
tic modeling where the multiple output layers are used to predict
context-dependent (CD) states from different state inventories. Un-
like the traditional multitask learning approach which defines a pri-
mary and secondary output layers but discards the secondary output
after training, we propose to use all output layers for recognition.
This can be achieved by designing a decoding network operating on
tuples of CD states and combining the scores of the different outputs
during search. To support training such models using a sequence-
based criterion, we propose to replace the multiple output layers with
a single layer encoding the CD state tuples as “meta-states”. Exper-
imental results are given on a large Voice Search task evaluated on
children’s speech.

Index Terms— system combination, multitask learning, se-
quence training, children’s speech

1. INTRODUCTION

In the machine learning community, the multitask learning (MTL)
approach proposed in [1] attempts to learn multiple related tasks si-
multaneously. Within the context of neural network training, MTL
can be implemented using a network sharing both its input features
and hidden units but having multiple, task-specific output layers. Be-
cause the learning of one task may help learning the other tasks bet-
ter, MTL was shown to learn a better hidden shared representation
of the data and to improve generalization [1].

In speech recognition, state-of-the-art systems typically rely on
some form of deep neural networks [2] to predict the posterior prob-
abilities of context-dependent (CD) states given the acoustic feature
vectors. Such acoustic models are then amenable to MTL train-
ing, requiring the definition of a main primary task and one or sev-
eral related secondary tasks. In [3, 4, 5, 6, 7] a deep neural net-
work (DNN) predicts context-dependent states as its primary task.
The secondary task defines a second set of outputs to predict either
context-independent (CI) states [6, 7], phone labels [3, 5], state or
phone context [3], articulatory context [6], or gender targets [8]. In
all those approaches but [7] the secondary outputs are discarded after
the DNN model is trained and the recognition procedure only uses
the primary outputs (providing an estimate of the CD state posteri-
ors). In contrast, in [7], the network is structured such that the sec-
ondary CI state outputs are also used to predict the primary outputs,
and in that sense, both primary and secondary outputs are used at
run time. Similarly, in the approach proposed by [4] where the sec-
ondary task aims at predicting tri-grapheme classes, both the primary
and secondary outputs are used at recognition time though indepen-
dently: the CD state posteriors are fed to a triphone-based decoder
while the tri-grapheme posteriors are used by a grapheme-based de-
coder. The recognition hypotheses provided by the two systems are

then combined with ROVER [9].
In [10], we constructed an ensemble of acoustic models indepen-

dently trained to predict CD states from different state inventories
(e.g. a 12k CD states and a 1k CD states inventories). Rather than
running multiple independent recognition systems and combining
the resulting hypotheses post-recognition (e.g. using ROVER), we
proposed instead to construct a single recognition system integrat-
ing the acoustic scores of the multiple systems at recognition time.
To further reduce the computational complexity and avoid running
inference in multiple neural networks simultaneously, we also pro-
posed to share the input and hidden layers of those models, leading
to a MTL architecture where both the primary and secondary out-
puts would predict CD states but based on distinct state inventories.
As a result, in contrast with the MTL procedure of [3, 5, 6] which
discards the secondary outputs after training, we used all primary
and secondary outputs, treating them as an ensemble of classifiers.
Unlike the approach in [4] which uses the primary and secondary
outputs independently, we integrated all outputs at recognition time
with a single recognition procedure using early acoustic score com-
bination [11, 12].

The model in [10] were trained using a cross-entropy criterion.
Because the acoustic scores from the primary and secondary outputs
are combined at recognition time using a score combination function
that may not be differentiable (e.g. maximum score combination),
the model cannot be directly trained using a sequence training crite-
rion. In this paper, we expand the work from [10] to enable sequence
training of such models. We will show that by moving the deriva-
tion of the acoustic score of a tuple of CD states out of the search
procedure onto the neural network and by defining a specialized out-
put layer with an inventory of CD state tuples called meta-states, we
can reformulate MTL training as a single task training procedure on
output labels designed to encode the multi-task labels. As a result,
those models can be trained using a traditional sequence training
procedure [13].

We report experimental results on a large scale Voice Search task
using convolutional, long short-term memory deep neural network
(CLDNN) [14] trained on 2,100 hours of data and evaluated on child
speech [15].

2. SYSTEM COMBINATION AND MULTI-TASK
LEARNING

2.1. System combination

In our previous work [10], we showed that the performance of a
large-scale production-quality CLDNN model [14] could be im-
proved by using an ensemble of CLDNN models trained on dis-
tinct CD states inventories constructed using randomized decision
trees [16]. Specifically, we found that the different systems trained
on those state inventories had near identical performance but would
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lead to significant reduction of the word error rate, ranging from
5% to 7% relative depending on the test set, when combining their
outputs using ROVER. To alleviate the computational load of run-
ning multiple decodings in parallel, we proposed to integrate the
state-level acoustic scores of each system at run time using a single
recognition procedure operating on a decoding graph defined on
tuples of CD states from the multiple systems1. In the context of a
finite state transducer (FST) based decoder, this only requires the
construction of a specialized context-dependency transducer while
keeping the decoding graph construction procedure unchanged. This
approach is essentially similar to using tree arrays [17] in dynamic
decoders which enable combining multiple acoustic models with
different state inventories in a single decoding procedure by defining
a virtual tree holding in each leaf a unique combination of leaves
from the individual trees. Note that a similar recognition proce-
dure was recently proposed in [18] but using multiple CD state
inventories constructed to encourage diversity rather than relying on
randomization.

Such a decoding approach corresponds to defining meta-states,
also called virtual states in [18], which represent tuples of CD state
symbols from the multiple state inventories that occur in identical
phonetic contexts. Since the resulting decoding network is de-
fined on meta-states labels, the search requires the derivation of
the likelihood p(X|〈CD1

i , CD2
j 〉) of an acoustic feature vector

X for a given meta-state 〈CD1
i , CD2

j 〉, here assuming that the
meta-state only involves 2 sets of CD states, where CD1

i and
CD2

j refers to the i-th (resp. j-th) CD state of the 1st (resp.
2nd) state inventory. This can be defined as a function of the
likelihood of X for each individual CD state component, i.e.
p(X|〈CD1

i , CD2
j 〉) = f(p(X|CD1

i ), p(X|CD2
j )). When those

likelihoods (or pseudo likelihood obtained by scaling the states pos-
teriors by the state priors in the case of a neural network system)
are represented as negative log-likelihood, or cost, the combination
function f() can be defined for example to select the minimum cost
or to compute the average cost from the individual states of the tuple.

2.2. Multi-task learning

Unfortunately, such an approach remains expensive in a production
setup as it requires running inference through multiple large acoustic
models, in our case CLDNN models, not to mention training multi-
ple independent models. To retain the benefit of exploiting multiple
state inventories but at a reduced computational cost, we suggested
in [10] to merge the input and hidden layers of all the models of the
ensemble and only keep distinct output layers. This is equivalent
to the MTL learning paradigm [1] where the network is expected
to learn a shared representation of the input data for the different
CD state classification tasks. However, unlike many of MTL ap-
proaches which discard the secondary outputs after training [3, 5, 6],
we use all outputs at decoding time, retaining the early score com-
bination described above within a single decoding procedure. The
resulting system architecture involves running inference through a
single MTL model.

One issue with this approach is that the MTL model is not di-
rectly amenable to be optimized using a sequence-training criterion
with our standard procedure [13]. This is because the decoder op-
erates on a specialized graph of meta CD states, while the neural
network outputs the posterior probabilities of each state inventory

1Note that for efficiency reasons our decoding graph is constructed at the
HMM level and HMM arcs are dynamically expanded into CD state arcs
during the search. For the sake of the discussion, we will here assume that
the graph is fully expanded to CD state arcs.

System # CD states # HMMs
#1 12,000 43,538
#2 6,000 29,456
#3 6,000 33,814
#4 2,000 11,414
#5 2,000 13,487
#6 2,000 13,893
#7 2,000 12,166
#8 1,000 4,461
Meta(#1, #8) 18,352 47,533
Meta(#2, #3) 25,567 50,356
Meta(#4, #5, #6, #7) 33,734 51,947

Table 1. Number of CD state and HMM symbols for 8 individual
systems of various sizes corresponding number of meta CD states
and meta HMM symbols obtained by constructing a meta-C trans-
ducer combining systems (#1, #8), systems (#2, #3) and systems (#4,
#5, #6, #7).

in different output layers. In addition, the predefined minimum cost
combination function f() used in [10] is not differentiable, prevent-
ing back-propagating the gradient of the sequence-based loss func-
tion.

2.3. Meta-state model

To alleviate the issues above, we propose to move the score com-
bination from the search procedure onto the neutral network itself.
This implies adding an extra output layer, as represented in Fig. 1
(b), constructed to provide an estimate of the posterior probability of
a meta CD state, as well as estimating the meta CD state priors to
properly enable the derivation of the pseudo meta-state likelihood.
We considered 2 implementation choices, as represented in Fig 1 (b)
and (c). In the first one, an extra output layer is constructed such that
the node corresponding to the meta CD state 〈CD1

i , CD2
j 〉 is only

connected to node CD1
i from the first output and node CD2

j from
the second output, enabling the learning of the score combination.
However, we simplified this architecture even more by dropping the
distinct inventory-specific output layers to adopt the architecture of
Fig. 1 (c) which corresponds to learning a hidden representation to
directly predict p(〈CD1

i , CD2
j 〉|X), an encoding of the multi-target

CD state outputs.

It should be noted that the meta CD state inventory does not
correspond to the full Cartesian product of the individual CD state
inventories but only to a small subset since by design, a meta CD
state is a tuple of individual CD states occurring in the same pho-
netic context. We report in Table 1 the size of a few meta CD state
inventories given the size of the CD state inventory of the individual
systems. For example, the combination of a system with 12k CD
states with a system with 1k CD states leads to a 18k meta CD states
inventory, while the combination of 4 × 2k CD states systems leads
to a 34k meta CD states system. Note that for a given meta CD state
inventory size, one cannot construct a regular single decision tree
of similar size that will provide the same labeling of a given word
sequence. That is, no single system of 18k CD states can lead to
the same labeling as the one obtained by integrating the 12k and 1k
systems onto their corresponding 18k meta-state labels.
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Fig. 1. (a) Multi-task training with multiple output layers defined on distinct CD state inventories and score combination carried out during
search. (b) Adding a meta-state layer to perform CD state score combination during inference rather than search (c) Direct training of a model
operating on meta-state labels encoding multiple outputs from the individual CD state inventories of (a).

3. EXPERIMENTS AND RESULTS

3.1. Task and Database

All experiments are carried out on a Voice Search (VS) task targeted
at young speakers to support applications such YouTube Kids [19].
The training set consists of a mix of adult and child speech, in the
order of 1.9M VS utterances from children and 1.3M utterances from
the general VS traffic, totaling 2,100 hours of speech. We used 2
test sets for our evaluations, a set of 16k utterances from children
and another of 25k utterances from adult speakers. Our training and
test sets were manually transcribed and in accordance with our data
retention policy, all data sets were anonymized. Further details on
how the data sets were constructed are available in [15].

We trained all our acoustic models from scratch in multiple
stages following the procedure described in [20]. We started by
flat-starting a context-independent DNN model that was then used
to construct a set of context-dependent states using Chou’s partition-
ing algorithm modified to support randomization of the clustering
procedure. We then trained a large context-dependent DNN model
consisting of 8 hidden layers of 2560 nodes with cross-entropy
before refining the model with sequence training. That procedure
was used to train the 8 DNN models listed in Table 1 with CD states
inventories ranging from 1k to 12k states. Note that the systems with
identical number of CD states were constructed by randomizing the
decision tree procedure to obtain different CD states inventories.
Experimental results reported in [10] illustrate that this procedure
is effective to construct a set of systems that can be combined
either post or during recognition to improve performance. For refer-
ence, our production child-speech system uses about 13k CD states.
Those models were then used to generate alignments used to boot-
strap the training of CLDNN acoustic models, using either the MTL
architecture of Fig 1 (a) operating on multi-outputs labels, or the ar-
chitecture of Fig 1 (c) operating on meta-state labels. The topology
of the CLDNN models is described in details in [15] and the models
constructed in this paper only differ in terms of the number of state
labels in the softmax output layers.

3.2. CLDNN training on meta-state labels

The DNN models constructed based on the procedure described
above were then used to realign and label the training data with tu-
ples of CD states for different system combinations. We considered

3 system configurations, the first one combining a 12k with a 1k
CD states inventories, the second combining 2 × 6k CD states in-
ventories, and the last one combining 4 × 2k CD states inventories.
Those alignments were used to derive the prior probabilities of the
CD state tuples defining the meta CD state inventory.

Given the tuples of CD states, we first trained a CLDNN model
similar to the architecture of Fig 1 (a) using a cross-entropy criterion.
Results are reported in Table 2 and for each trained MTL model, we
ran recognition using either each individual output layer or by com-
bining the acoustic costs of each output layer using a minimum cost
combination. In all cases, decoding by combining the scores from
the multiple output layers provides only marginal improvement over
decoding from only one of the output layers. In addition, we ob-
served in separate experiments that single-task training of a 6k CD
states system and of a 12k CD states led in both cases to 10.0%
WER on the Child test set. This indicates that the multi-style train-
ing paradigm does not lead to any significant improvements over
single-task training, unlike what is reported in [5]. We hypothesize
that MTL training is mostly effective when using smaller amount of
training data but provides diminishing return with increasing amount
of data. Those results also confirm that large CLDNN models are not
very sensitive to the size of the CD state inventory, as the 6k and 12k
CD states model delivered similar performance.

It should be noted however that when the sizes of the output lay-
ers differ significantly, as for example when training an MTL model
with a 12k and 1k output layers, MTL training provides a regulariza-
tion effect: decoding using only the 1k CD state output gives 10.9%
WER on Child while a single-task model with 1k CD states gives
11.8% WER. Conversely, decoding using only the 12k CD state out-
put of the MTL model gives 10.2% WER on Child, while a single-
task 12k CD states model gives 10.0% WER. In other words, MTL
training improves the quality of the 1k CD state output layer over
single-training a 1k CD state model, but slightly degrades the qual-
ity of the 12k CD state output over single-training a 12k CD state
model.

The results also indicate that reducing the size of the output lay-
ers to 2k CD states noticeably degrades performance, despite in-
creasing the number of output layers to 4. This is consistent with
separate experiments where we observed a degradation in perfor-
mance using single-task systems with state inventories below 4k CD
states.

Next, we trained a CLDNN model following the meta-state ar-
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System Child Adult
Softmax#2 (6k states) 10.0% 12.6%
Softmax#3 (6k states) 10.1% 12.7%
MinCost(#2,#3) 9.9% 12.5%
Softmax#1 (12k states) 10.2% 12.8%
Softmax#8 (1k states) 10.9% 13.6%
MinCost(#1, #8) 10.1% 12.6%
Softmax#4 (2k states) 10.7% 13.2%
Softmax#5 (2k states) 10.7% 13.3%
Softmax#6 (2k states) 10.8% 13.5%
Softmax#7 (2k states) 11.0% 13.5%
MinCost(#4, #5, #6, #7) 10.6% 13.5%

Table 2. Cross-entropy MTL training for various state inventories
and combinations for the system architecture in Fig. 1 (a). Top part:
MTL system with 2 outputs layers of 6k states each (state inventory
#2 and #3 from Table 1). Middle part: MTL system with 2 outputs
layers of 12k and 1k. Bottom part: MTL system with 4 outputs
layers of 2k states each. The ’Softmax’ lines refers to decoding with
a single output from the MTL model. The ’MinCost’ line refers to
decoding using minimum cost combination.

chitecture of Fig. 1 (c) and operating on multiple configurations
corresponding to the last 3 lines of Table 1, that is, a first system
with a meta-state layer constructed from a 12k/1k state tuple, an-
other with a meta-state layer constructed from 2 × 6k state tuples,
and the last one from 4 × 2k states tuples. The models were first
trained using cross-entropy training and then refined with sMBR
sequence-training. Results are given on Table 3. One can observe
that the meta-state does not match the performance of the MTL train-
ing which we attribute to the much larger size of the softmax output
layer and a propensity to overtrain. Nevertheless, the approach en-
ables sequence training the model providing a significant improve-
ment over the CE MTL model. We expect that on applications with
a smaller amount of training data where the effectiveness of MTL
training was demonstrated [5, 6], the proposed use of meta-state la-
bel can facilitate sequence-training the model.

System Child Adult
MTL (6k, 6k) 9.9% 12.5%
Meta (6k, 6k) 10.3% 12.7%
Meta seq (6k, 6k) 8.7% 11.6%
MTL (12k, 1k) 10.1% 12.6%
Meta (12k, 1k) 10.8% 13.0%
Meta seq (12k, 1k) 8.7% 11.5%
MTL (2k, 2k, 2k, 2k) 10.6% 13.5%
Meta (2k, 2k, 2k, 2k) 11.4% 13.9%
Meta seq (2k, 2k, 2k, 2k) 9.5% 12.5%

Table 3. Multitask (MTL) and meta-state training for various state
inventories and combinations.

4. CONCLUSION

Multi-task learning traditionally involves learning a primary and sec-
ondary task jointly, but only uses the primary outputs at recogni-
tion time. In contrast, we propose in this paper a MTL approach
to learn multiple CD state inventories in which all outputs are used
at run-time by combining them using an integrated decoding pro-
cedure operating on tuples of CD states occurring in identical pho-

netic contexts. To support training such a model architecture using a
sequence-based criterion, we propose to move the score combination
into the neural network, which can be further simplified by design-
ing the output layer to directly predict meta-state labels. We have
found that while this procedure effectively enables the training of a
model operating on a large meta-state inventory, it does not signif-
icantly outperform a baseline single task system. In particular, we
note that in contrast with the results presented in [5, 6], MTL train-
ing only provides marginal improvements and speculate that this is
due to the large amount of training data used in our experiments.
Nevertheless, we believe that when the amount of training data is
limited [5, 6], MTL training can improve performance and that the
proposed approach enables sequence-training such models.
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