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ABSTRACT

Multilingual Deep Neural Networks (DNNs) have been successfully
used to exploit out-of-language data to improve under-resourced
ASR. In this paper, we improve on a multilingual DNN by utilizing
low-rank factorization (LRF) of weight matrices via Singular Value
Decomposition (SVD) to sparsify a multilingual DNN. LRF was
previously used for monolingual DNNSs, yielding large computa-
tional savings without a significant loss in recognition accuracy. In
this work, we show that properly applying LRF on a multilingual
DNN can improve recognition accuracy for multiple low-resource
ASR configurations. First, only the final weight layer is factorized.
Since the output weight layer needs to be trained with language
specific data, reducing the number of parameters is beneficial for
under-resourced languages. It is common in multilingual DNN
speech recognition, to further adapt the full neural network through
retraining of the multilingual DNN on target language data. Again
we observe that in low-resource situations, this adaptation can bring
significant improvement if LRF is applied to all hidden layers. We
demonstrate the positive effect of LRF in two very different scenar-
ios: one is a phone recognition task for two related languages and
the other is a word recognition task using five different languages
from the GlobalPhone dataset.

Index Terms— Multilingual deep neural network, low-rank fac-
torization, low-resource ASR

1. INTRODUCTION

Recently, there has been significant interest in the area of multi-
lingual acoustic modeling in the context of deep neural networks
(DNNSs) in particular for under-resourced languages [1, 2, 3, 4]. In
the DNN, the hidden layers can be considered as a universal com-
plex feature transformation which can be successfully used for dif-
ferent languages [5]. Hence, the hidden layers can be trained simul-
taneously for different languages to benefit from each other. More
specifically, to bootstrap acoustic modeling for a low-resource lan-
guage, the auxiliary data from other high resource language(s) can
be used to train the multilingual DNN and then only the softmax
layer is trained with the low-resource target language [6, 2]. Addi-
tional improvement can be obtained by further adjusting the whole
DNN which is often termed as DNN adaptation [7, 8]. Universal
phoneme sets [9, 10] and phone targets mapped across a small set
of languages [11] have both been used as a multilingual phoneme
set during training. There are generally two popular configurations
of multilingual DNN systems: the first one is the conventional mul-
tilingual DNN based on a hybrid system [12] ; the second model
configuration is based on a tandem which exploits the DNNs to
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perform nonlinear discriminative feature transformation [13]. The
transformed features are then used as inputs for another GMM or
DNN based model. The latter allows multiple DNNs to be stacked
and is referred to as a stacked hybrid system [4].

DNN training involves a large number of parameters which
makes it slow and can lead to overfitting. Therefore, it is of interest
to develop techniques that reduce the number of parameters without
hurting the performance; two popular approaches to achieve this
are dropout [14] and maxout [15]. In [16], it is shown that a large
portion of the weight parameters in a DNN are very small and have
a negligible effect on the output values of each layer which exploits
the sparseness in DNN. Other techniques have been proposed which
change the DNN architecture; for example, [17] proposed to shrink
the hidden layers gradually from bottom to upper layers. Moreover,
low-rank matrix factorization for DNN weight matrices using linear
bottleneck [18] and SVD [19] was proposed to reduce the overall
training time while recognition accuracy was not significantly af-
fected. The aforementioned studies deal with model size reduction
and accelerating the DNN training and test time for monolingual
systems; while no significant improvement is achieved. However,
[20] showed that LRF of the final weight layer improves the per-
formance of a monolingual stacked hybrid system and the low-rank
linear layer outperforms sigmoid layer to extract bottleneck features.
Very recently, LRF of the last weight layer has been utilized in the
framework of multilingual DNNs and improved performance was
reported for a very resource-constrained setting [21].

Our work extends the use of LRF for multilingual DNN by ex-
ploring several scenarios in which not only the final weight layer,
but also other weight layers are factorized, and we show that DNN
adaptation benefits from this factorization. The rest of the paper is
organized as follows. In section 2, we describe the multilingual DNN
training with shared hidden layers. Then, the low-rank factorization
technique is explained in section 3. The experimental setup and re-
sults are presented in sections 4 and 5. Finally, we have concluding
remarks.

2. MULTILINGUAL DNN

Deep Neural Networks can be considered as a cascaded sequence
of nonlinear feature extractors followed by a classifier at the output
layer. The neural net is trained to predict the posterior probability
of each context-dependent state determined by standard clustering
algorithms from previously trained HMMs [22]. Neural networks
usually employ a sigmoid or tanh nonlinearity function; however,
it has been shown that rectifier linear unit (ReLU) can improve the
performance of DNN [23]. In this work, we use the ReLU nonlin-
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tween the (I — 1)th and Ith layers, b(") is the bias vector at the [th
layer.

Multilingual DNNSs rely on the assumption that the hidden lay-
ers are universal feature extractors that are transferable between lan-
guages and domains [6, 1]. The whole procedure may be summa-
rized as follows [7]: First, a DNN is trained using multilingual train-
ing data. Then, for a novel target language the hidden layers are
reused and only the softmax layer is trained with target language
data. In a last phase, further adaptation of all parameters in the DNN
may be performed. The number of epochs for retraining the whole
network depends on the amount of available data from the target
language. In the multilingual target layer, each language can have
its own output layer or a common output layer may be used; in the
latter, we need to provide a universal phoneme set.

3. LOW-RANK FACTORIZATION

The use of low-rank matrix factorization for DNN training is pro-
posed in [18] and [19] to reduce computational and space complexity
for monolingual DNNs. To this end, each connection weight matrix
can be factorized into smaller matrices and thereby the number of
parameters in the network is significantly reduced. Especially when
DNNss are trained with a large number of output targets, [18] shows
that LRF of the last weight layer reduces the number of parameters of
the DNN significantly. In the case of low-resource ASR using multi-
lingual DNN, LRF is particularly attractive as it reduces the number
of independent parameters that should be estimated or adapted with
low-resource data.

In a first configuration, we only factorize the weight matrix of
the final layer. Let us denote the final weight matrix for language L
by AL with dimensions ng x n& where n g is the number of units in
the last shared hidden layer and n% is the number of output targets
for language L. Note that when a common output target using a
universal phone set is used, there is only one output weight layer. In
both scenarios, if there is a rank n,. for the final weight matrix, then
there exists a factorization AY = BY x C'* where BY and C'* are
full rank matrices of size ng X n, and n,. X n% respectively. Now, in
a multilingual low-resource scenario we may want to further reduce
the number of language dependent parameters by incorporating the
matrix B” in the layers that are shared across languages and thus
BY = B for all languages as shown in Fig. 1 [21]. Then, for
a language L', we only need to train an output weight matrix of
dimensions n, X n;Lp’, which is much smaller than ng X n%l. Itis
worth noting that in this approach there exists one extra weight layer
in the shared components compared to the typical multilingual DNN;
however, we show in the experiments that this is not very relevant.

Secondly, we propose to extend LRF to other weight layers
which leads to a huge reduction of the number of parameters in the
multilingual DNN system. The LRF is applied after initial training
of the multilingual DNN and before adaptation with resource-
constrained target language data. It is true that after low-rank
factorization of all layers the multilingual DNN may have moved
away from its optimal trained state and that convergence may not be
achieved during retraining, given limited data and number of train-
ing passes. Thus, it is of great interest to investigate if the possible
gain by adaptation can overcome the convergence issue.

In this paper, low-rank factorization of the weight layers is done
by using SVD based model restructuring method in which a n g X nk
weight matrix layer A is decomposed as:
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Fig. 1. Multilingual DNN training with LRF in the final weight layer.
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Then, we consider B = Upy; xn, and C~ = Enrxann%an and

replace A” with these two smaller matrices as described in [19].

LRF can also be accomplished by configuring the DNN with a
linear bottleneck and let the factorization being learned during DNN
training, and since parameters of DNN is reduced before training,
the overall training time can be reduced as well [18]. The downside
of this method, however, is that the bottleneck dimension has to be
defined beforehand and for a new dimensionality we need to train a
new DNN. However, the main goal of this paper is to improve the
accuracy rather than decreasing training time; thus, SVD is applied
to factorize the weight layers so that n,- can be tuned with less com-
putational complexity.

4. EXPERIMENTAL SETUP

4.1. ASR systems

Monolingual reference systems were built using target language data
only. First, Gaussian mixture model systems were built using a
39-dimensional MFCC feature vector with 13 cepstral coefficients,
and their first and second derivatives. Speaker based cepstral mean
and variance normalization (CMVN) was applied and features were
spliced in time taking a context size of 7 frames (i.e.,£3), followed
by decorrelation and dimensionality reduction to 40 using LDA and
further decorrelation using MLLT [24]. The number of gaussians
and tied states for GMM based modeling was tuned over the de-
velopment set. The derived states were used as targets in the DNN
systems.

Then, monolingual DNNs were trained on mean and variance
normalized 24-dimensional FBANK features being concatenated
with 7 left and 7 right neighbor frames to yield an input feature
vector size of 360; we observed that FBANK features outperform
MFCCs as input features for DNN. The multilingual systems were
based on multi-task learning of DNNs. The neural network’s in-
put features and the learning rates were the same as those used
in the monolingual DNNs except that normalization was not ap-
plied. More details about the implementations are provided in the
experiment section.

All the DNNs used in this study were trained using a ReLU non-
linearity based on greedy layerwise supervised training [25]. The
initial and final learning rates were specified by hand and equal to
0.01 and 0.001 respectively.

The Kaldi ASR toolkit [26] is used for both GMM and DNN
based acoustic modeling.



4.2. Flemish-Afrikaans

First, we perform experiments with two closely related languages:
Flemish and Afrikaans; in this setting, Afrikaans plays the role of
under-resourced target language, and Flemish takes on the role as
well resourced donor language. We used component-o from the spo-
ken Dutch corpus (Corpus Gesproken Nederlands, CGN) [27]. This
dataset contains 38 hours of speech sampled at 16KHz and we have
taken 36hr for the training and 2hr for the evaluation. In this work,
we used only the training part including 36 hours (produced by 150
speakers) as donor data. The CGN pronunciation dictionary uses an
alphabet of 47 phonemes.

The Afrikaans data is taken from the NCHLT corpus consist-
ing of 210 speakers, including broadband speech sampled at 16 kHz
[28]. The phoneme set contains 38 phonemes, including silence.
All repeated utterances were removed from the original dataset. In
our setting, to simulate various low resource conditions, we consider
one hour of data, five hours of data and the full training set including
about 10.7 hours [29]. We used the default evaluation and devel-
opment sets including 2.2hr and 1hr data respectively'. We used the
standard HLT test scenario which is a phone recognition task and the
results are presented as phone error rate (PER). A bi-gram phoneme
language model is trained on the training set.

4.3. GlobalPhone

Next, we extend our experiments to a multilingual case where five
languages are used from the GlobalPhone dataset [30] with German
as the target language, and the other four as donor languages. The
GlobalPhone corpus is a multilingual text and speech corpus that
covers speech data from 20 languages [30]. In our experiments,
German (GE) was used as the target language, and Spanish (SP),
Portuguese (PO), Russian (RU) and French (FR) as the auxiliary lan-
guages. The detailed statistics for these languages from the Global-
phone corpus are presented in [30]. The recognition task is a stan-
dard word recognition task using a trigram language model obtained
from Karlsruhe University?.

The full German database consists of 14.85 hours by 65 speak-
ers. To simulate low-resource conditions, we constructed two sub-
sets containing 1 hour (8 speakers) and 5 hours (40 speakers) of data,
both using randomly selected 7-8 minutes of speech for each of the
selected speakers. The development and evaluation set include 1.95
and 1.45 hour data and each of them consists of 6 speakers. For the
multilingual experiments, we used respectively following amounts
of data of the donor languages: 22.74hr for FR, 22.71hr for PO,
21.10hr for RU and 17.55hr for SP [6].

5. EXPERIMENTS

5.1. Flemish-Afrikaans

The monolingual reference experiments yielded 505, 1380 and 2281
context-dependent states for 1hr, Shr and 10.7hr training data respec-
tively. The number of hidden layers and neurons per layer were
tuned; the optimal number of hidden layers were 2, 3, 4, and the
number of hidden units in each layer were 200, 400 and 500 for the
respective settings. The first two rows in Table 1 show the PERs
using GMM and DNN based acoustic modeling.

IThe authors are thankful to the HLT group at Meraka for providing us
with the training, test and validation sets and Afrikaans dictionary.
Zhttp://csl.ira.uka.de/GlobalPhone/

Table 1. Comparing PERs(%) for Afrikaans using monolingual and
multilingual systems with and without LRF for the final weight layer.

Systems Afrikaans data
y Thr | 5hr | 10.7hr
Monoli ) HMM/GMM | 23.09 | 16.87 | 14.81
onomngud HMM/DNN | 23.56 | 15.20 | 12.06
Multilingual Not adapted | 18.66 | 12.83 | 10.89
DNN Adapted 18.52 | 12.64 | 10.79
Adapted multilingual n, = 100 18.69 | 12.68 | 10.36
DNN with LRF n, = 200 17.76 | 12.30 | 10.29
for the final layer n, = 500 17.47 | 12.29 | 10.44

For the multilingual DNNs we examined two possible types of
multilingual phoneme targets. In the first one, the phoneme targets
for Flemish and Afrikaans are kept separate. In the second scenario,
a universal phoneme set was created by applying a knowledge-based
phoneme mapping [31]. We observed in our experiments that the
latter outperforms and thus we only report the results of the second
scenario in this paper. In this case, a common multilingual target
was used and therefore the whole multilingual DNN, including the
softmax layer, was trained using both Flemish and Afrikaans data
and the output target included 4131, 4778 and 5422 tied-states for
multilingual HMM/GMM systems with 1hr, Shr and 10hr Afrikaans
included respectively. Then, these hidden layers were reused to train
a softmax layer using only the Afrikaans data. Furthermore, adapta-
tion of the full DNN to Afrikaans data only was performed. Table 1
also shows the PERs obtained using the multilingual DNN system;
the optimal number of hidden layers in each setting were 7, 8, and
8 for 1hr, Shr, and 10.7hr Afrkaans respectively with the number of
hidden units per layer equal to 1000. Table 1 also compares the PERs
obtained by only training the softmax layer with those achieved af-
ter updating all layers (i.e. adaptation is applied). The following
observation can be made from Table 1: first, the performance for tar-
get language (Afrikaans) is improved when Flemish is included for
multilingual DNN training in all settings. Moreover, it is also always
beneficial to apply adaptation by further updating the whole DNN.

To investigate the effectiveness of LRF in the multilingual DNN,
SVD is applied to factorize the last weight layer after which the
whole DNN is fine tuned. In this experiment, we retrained the mul-
tilingual DNN with multilingual data for 5 epochs. Then, all the
hidden layers together with the first weight matrix of size 1000 X 7
are transferred with further adaptation to bootstrap the acoustic mod-
eling for the Afrikaans language. The PERs for different choices of
n,- are shown in Table 1.

Table 1 reveals further trends: first, using low-rank decomposi-
tion of the multilingual DNN improves the performance compared
to the conventional multilingual DNNs. Moreover, the PER reduc-
tion is more pronounced when the target language is more under-
resourced. However, the reasonable questions which might arise
are that how the nonlinear bottleneck would perform? and as men-
tioned in section 3, the low-rank network has an extra weight layer
compared to the multilingual baseline system so is the obtained im-
provement because of this extra layer? To answer these questions,
we consider a scenario with 1hr Afrikaans training data; the simplest
approach is to train a conventional multilingual DNN with 8 hidden
layers where a nonlinear bottleneck constraint is applied on the last
layer to have the width of n,.. Thus, the total number of weights in
this multilingual system is the same as the 7-layer multilingual DNN
with LRF of the last weight layer. The PER obtained for this system
when n,. = 500 is 18.13% which is higher than the corresponding
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Table 2. WER(%) for German using monolingual and multilingual
DNN systems.

Table 3. WER(%) for different multilingual settings where the last
weight layer is factorized with n,, = 500.

PER presented in Table 1 which is 17.47%.

5.2. GlobalPhone

In this set of experiments, we used LRF in a more multilingual en-
vironment where German plays the role of low-resource target lan-
guage as described in section 4.3. First, we constructed baseline
systems for the three training sets in a monolingual fashion using
HMM/GMM and HMM/DNN acoustic modeling. The number of
context-dependent triphone states were 700, 1200 and 3100 with an
average of 4, 9 and 13 Gaussian components per state for 1hr, Shr,
and 14.85hr German training data respectively. These parameters
were tuned on the development set. Word error rates (WER) for
both development (Dev.) and evaluation (Eval.) sets are presented
in Table 2 for HMM/GMM systems as well as HMM/DNN ones.
The optimal number of hidden layers were 4, 4, 5 and the number
of hidden units in each layer were 50, 200, and 300 for 1hr, Shr and
14.85hr of training data respectively.

Then, a multilingual DNN was trained with a dedicated soft-
max layer for each language while the hidden and input layers were
shared. Following the setup of the authors in [6], the number of
target context-dependent states were set to 3100 for each auxiliary
language. The number of hidden layers and units per layer were
tuned. We used a DNN with 7 layers for the setting including 1hr of
German data and 8 layers for the two other settings; the number of
nodes was 1500 per layer in all DNNs. The performance of the mul-
tilingual systems with and without adaptation is presented in Table 2.
It is observed that no improvement was obtained by adaptation when
only lhr or Shr of German data was available. With more available
German data, we can see that adaptation yields a small improvement.
This is typical behavior for a multilingual DNN with a large number
of parameters.

Next, the final weight layer of the best multilingual DNN for
each scenario was factorized using SVD and afterwards the whole
network was fine tuned with multilingual data. The WERs for n, =
500 are presented in Table 3 for both development and evaluation
sets. We also tried other bottleneck dimensions like 700 and 200
and we observed that n,, = 500 is a reasonable choice. The num-
ber of epochs needed for convergence depends on the settings and
n,. For the German 1hr data, the system improves for development
set by just doing LRF which is the same behavior we observed in
Afrikaans-Flemish experiments (Table 1); we attribute this improve-
ment to the fact that the number of parameters that should be es-
timated with under-resourced language specific data has decreased.
Moreover, when adaptation was applied, we observed improvements
in all settings. This is most likely due to the fact that DNN model size
is reduced. For example, for the setting with 14.85hr German data
the number of the parameters in the multilingual DNN is reduced
by a factor of 0.88. Finally, we experimented with factorization of
ALL hidden weight layers. To this end, we took the best model ob-

Settings Monolingual Multilingual DNN German data
GMM | DNN | Not adapted | Adapted Adaptation lhr Shr 14.85hr
Ihr Dev. | 22.84 | 2141 18.74 18.78 Dev. | Eval. | Dev. | Eval. | Dev. | Eval
Eval. | 3538 | 34.90 32.54 32.57 No 18.49 | 32.67 | 12.87 | 22.28 | 11.10 | 18.53
Shr Dev. | 15.70 | 13.40 12.74 12.76 Yes 18.33 | 32.19 | 12.69 | 22.19 | 10.82 | 17.99
Eval. | 2441 | 22.93 22.13 22.04
14.85hr Dev. | 13.95 | 11.56 11.15 11.02 Table 4. Comparing WER(%) for German data using multilingual
Eval. | 21.36 | 19.49 18.78 18.36 DNN where SVD is applied on ALL hidden layers (1, = 500).

Set: Dev. Eval
Adaptation | Yes No Yes No
lhr 16.86 | 20.14 | 29.72 | 35.17
Shr 11.82 | 1493 | 19.81 | 23.25
14.85hr 10.16 | 11.04 | 16.79 | 17.74

tained from the previous experiment; since the last weight layer of
this model was already factorized, SVD was applied only on the hid-
den weight layers and the input weight layer was kept intact. In our
experiment, ng = 1500 and thus n, needs to be chosen such that
(1500 x ny + n, x 1500) < 1500 x 1500. We set n, = 500;
so the number of parameters in each hidden weight layer is reduced
by a factor of 0.66; afterwards, the whole network is retrained with
multilingual data for 5 epochs. Table 4 compares the WERs for dif-
ferent factorized models before and after adaptation. From Table 4
we observe that the factorization of all hidden weight layers initially
degrades the performance when lhr and Shr of data is available for
German. This is not surprising as by applying LRF, a small amount
of noise is added to all weight matrices and hence the network has
moved away from the local optimum that was reached during train-
ing. However, when adapting the network from this starting point we
ultimately reach a significantly better performance. This can be un-
derstood by the reasoning that LRF has created a network with fewer,
but more relevant parameters. In 14.85hr scenario, we observe that
the lost information after LRF of all layers can be well retrieved by
multilingual retraining due to the availability of enough target lan-
guage training data. Moreover, further improvement is achieved by
adaptation like the other two scenarios. It is also important to note
that the choice of learning rate in the adaptation phase is crucial; in
our work, it was set to 0.0001.

6. CONCLUSIONS

In this paper, LRF of multilingual DNN was studied for improv-
ing low-resource ASR. We examined different settings with different
amount of data from target under-resourced language. First, we eval-
vate the impact of LRF of a multilingual DNN for two related lan-
guages, Flemish and Afrikaans, in a phone recognition task. More-
over, we conducted a word recognition task where German was the
target language and four donor languages were taken from Glob-
alPhone dataset. From the combined set of experiments we may
draw following conclusions: (i) In all scenarios, using extra data
from donor languages improved the recognition results with 10%
and more relatively, whereas the proximity of the donor language
to the target language did not seem to be important. (ii) Low-Rank
Factorization of the final weight layer gives a further improvement
of 3-6% relative if followed by adaptation; (iii) Low-rank factoriza-
tion of ALL hidden layers in combination with adaptation can boost
the results with 7-10% relative in comparison with the normal mul-
tilingual DNN.
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