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ABSTRACT

In this paper, we investigate the use of prediction-adaptation-
correction recurrent neural networks (PAC-RNNs) for low-
resource speech recognition. A PAC-RNN is comprised of a
pair of neural networks in which a correction network uses
auxiliary information given by a prediction network to help
estimate the state probability. The information from the cor-
rection network is also used by the prediction network in a
recurrent loop. Our model outperforms other state-of-the-
art neural networks (DNNs, LSTMs) on IARPA-Babel tasks.
Moreover, transfer learning from a language that is similar to
the target language can help improve performance further.

Index Terms— DNN, LSTM, PAC-RNN, Multilingual

1. INTRODUCTION

The behavior of prediction, adaptation, and correction is
widely observed in human speech recognition [1]. For ex-
ample, listeners may guess what you will say next and wait
to confirm their guess. They may adjust their listening effort
by predicting the speaking rate and noise condition based on
current information, or predict and adjust a letter to sound
mapping based on the talker’s pronunciations.

Previously [2], we proposed the prediction-adaptation-
correction RNN (PAC-RNN) which tries to emulate some of
these mechanisms by using two DNNs; a prediction DNN
that predicts the next phoneme, and a correction DNN that
estimates the current state probability based on both the cur-
rent frame and the hypothesis from the prediction DNN. The
model showed promising results on TIMIT, but it was unclear
whether a similar gain could be achieved on larger ASR tasks
where the prediction information might already be incorpo-
rated by the language models. Here, we successfully apply
the PAC-RNN to LVCSR on several low-resource languages
that are currently being used in the IARPA-Babel program.
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In addition, we study the effect of transfer learning for re-
current architectures. Recurrent networks such as LSTMs [3,
4] are known to require a large amount of training data in
order to perform well [5]. For the IARPA-Babel tasks, mul-
tiple groups have incorporated multilingual training in order
to alleviate data limitation issues. One popular approach is
multi-task training using DNNs. In a multi-task setup, a sin-
gle DNN is trained to generate outputs for multiple languages
with some tied parameters. This approach has been used
for robust feature extraction via bottleneck (BN) features [6,
7, 8, 9], or for classifiers in hybrid DNN-HMM approaches
[10, 11]. In [12], Karafiát et al. found that using CMLLR
transformed BN features as inputs to a hybrid DNN could fur-
ther improve ASR performance. However, we believe none of
this research has investigated recurrent networks for low re-
source languages in a multilingual scenario.

The work presented here is an extension of [2] based
on our multilingual framework in [7]. We first extract BN
features using multilingual networks to train different hy-
brid neural network architectures. Experiments show that the
LSTMs outperform DNNs, and that the PAC-RNN provides
the biggest gains for this task. Additional improvements are
observed when the models are adapted from networks trained
on languages that are most similar to the target language.

The rest of the paper is organized as follows. In Section
2, we review the PAC-RNN model, and describe an enhanced
version that incorporates an LSTM. In Section 3, we describe
our multilingual system and how it is used with the PAC-
RNN. We explain our experiments results in Section 4.

2. PREDICTION-ADAPTATION-CORRECTION
RECURRENT NEURAL NETWORKS

2.1. Model structure and training

The PAC-RNN used in this work follows our previous work
in [2]. Fig. 1 illustrates the structure of the PAC-RNN studied
in this paper. The main components of the model are a correc-
tion DNN and a prediction DNN. The correction DNN esti-
mates the state posterior probability pcorr(st|ot,xt) given ot,
the observation feature vector, and xt, the information from
the prediction DNN, at time t. The prediction DNN predicts

5415978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



Input features

Correction DNN

Prediction DNN

Delay

Context expansion

Sigm
oid

Sigm
oid

B
ottleneck 

Softm
ax

Sigm
oid

Sigm
oid

Projection 
layer

Softm
ax

Sigm
oid

Prediction info

pcorr(st|ot,xt)

ppred(lt+n|ot,yt)

hpred
t

xt = [hpred
t�T corr , . . . , h

pred
t�1 ]>

ot

ot

yt = hcorr
t

Auxiliary info for prediction

Fig. 1. The Structure of the PAC-RNN-DNN

future target information, lt+n (l can be a state s or a phone
θ, and n is the number of frames look ahead). Note that since
yt, the information from the correction DNN, depends on xt,
the information from the prediction DNN, and vice versa, a
recurrent loop is formed.

The information from the prediction DNN, xt, is from a
bottleneck hidden layer output value hpredt−1 . To exploit ad-
ditional previous predictions, we stack multiple hidden layer
values as

xt = [hpredt−T corr , ..., h
pred
t−1 ]T , (1)

where T corr is the contextual window size used by the cor-
rection DNN and is set to 10 in our study. Similarly, we can
stack multiple frames to form yt, the information from the
correction DNN, as

yt = [hcorrt−Tpred−1, ..., h
corr
t ]T , (2)

where T pred is the contextual window size used by the pre-
diction DNN and is set to 1 in our study. In addition, in the
specific example shown in Fig. 1, the hidden layer output
hcorrt is projected to a lower dimension before it is fed into
the prediction DNN.

To train the PAC-RNN, we need to provide supervision in-
formation to both the prediction and correction DNNs. As we
have mentioned, the correction DNN estimates the state pos-
terior probability, and thus the state label, so that the frame
cross-entropy (CE) criterion can be used. For the prediction
DNN, we follow [2], and use the phoneme label for the pre-
diction targets.

The PAC-RNN training problem is a multi-task learning
problem which is similar to [13, 14] (also use phone targets in
a multi-task training setup). The two training objectives can

be combined into a single one as

J =

T∑
t=1

(α∗ln pcorr(st|ot,xt)+(1−α)∗ln ppred(lt+n|ot,yt)),

(3)
where α is the interpolation weight, and is set to 0.8 in our
study unless otherwise stated, and T is the total number of
frames in the training utterance. Note that in a standard PAC-
RNN as described here, both the correction model and predic-
tion model are DNNs. From this point onwards we will call
this particular setup, the PAC-RNN-DNN.

2.2. PAC-RNN-LSTM

LSTMs have improved speech recognition accuracy on many
tasks over DNNs [3, 4, 5]. To further enhance the PAC-RNN
model, we use an LSTM to replace the DNN used in the cor-
rection model. The input of this LSTM is the acoustic feature
ot concatenated with the information from prediction model,
xt. The prediction model can also be an LSTM but we did
not observe performance gain on the experiments. To keep it
simple, we use the same DNN prediction model as [2].

3. STACKED BOTTLENECK ARCHITECTURE

3.1. Stacked bottleneck (SBN) features

The BN features used in this work follow our previous work
in [15]. An SBN is a hierarchical architecture realized as a
concatenation of two DNNs, each with its own bottleneck
layer. The outputs from the BN layer in the first DNN are
used as the input features for the second DNN, whose outputs
at the BN layer are then used as the final features for standard
GMM-HMM training.
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Fig. 2. Steps to adapt a multilingual SBN to a target language via
the closest language selected via LID.

3.2. Bottleneck-CMLLR features in a hybrid system

In [12], the authors proposed a DNN hybrid system that
used the first stage BN features with speaker adaptation (BN-
CMLLR). This system yielded the best results for the Babel
evaluation that year. In this work, we follow a similar ap-
proach by replacing the second stage DNN with recurrent
architectures (LSTM or PAC-RNN). The BN-CMLLR fea-
tures were taken from a network trained in a multilingual
fashion and adapted to the target language. For the DNN and
PAC-RNN, these features were stacked in context of 31(±15)
frames and downsampled by a factor of 5. Following [5], no
context expansion is used for the LSTM. The output state
label is also delayed by 5 to utilize the information from the
future.

3.3. Multilingual training and adaptation of SBN features

The multilingual training of the SBN follows [16] where all
the DNN targets from each language are pooled together, each
with its own softmax layer. Adapting the multilingual SBN to
a target language can be done by performing additional fine-
tuning steps on each DNN sequentially using the data from
the target language. Our previous work [7] shows that using
just the language closest to the target language from the pool
of source languages to train the second DNN can serve as a
better initialization model than the multilingual second DNN.
The closest language can be identified from just the acoustic
data by training a Language Identification (LID) system.

A flowchart of how a LID-based multilingual system can
be trained is shown in Fig. 2. We start by adapting the first
DNN with data from the target language. Instead of using the
second multilingual DNN to initialize, we train the second
DNN from random initialization using the closest language’s
data and output targets. After the DNN converges, we then do
a final adaptation to the target language.

3.4. Multilingual training of BN-hybrid system

The input of the hybrid system (DNN, LSTM or PAC-RNN)
is the same as the second DNN in the SBN system. Dur-
ing the adaptation stage, the softmax is replaced by the target
language state labels (phone labels for the PAC-RNN predic-
tion model) with random initialization while the hidden layers
are initialized from the DNN, LSTM or PAC-RNN which is
trained using the closest language.

4. EXPERIMENTS

4.1. IARPA-Babel corpus

The IARPA-Babel program focuses on ASR and spoken term
detection on low-resource languages [17]. The goal of the
program is to reduce the amount of time needed to develop
ASR and spoken term detection capabilities in a new lan-
guage. The data from the Babel program consists of collec-
tions of speech from a growing list of languages. The project
is on its fourth year. For this work we will consider the Full
pack (60-80 hours of training data) of the 11 languages re-
leased in the first two years as source languages, while the
languages in the third year will be the target languages [18].
Some languages also contain a mixture of microphone data
recorded at 48kHz in both train and test utterances. For the
purpose of this paper, we downsampled all the wideband data
to 8kHz and treated it the same way as the rest of the record-
ings. For the target languages, we will focus on the Very Lim-
ited Language Pack (VLLP) condition which includes only 3
hours of transcribed training data. This condition excludes
any use of human generated pronunciation dictionary. Unlike
in the previous two years of the program, usage of web data is
permitted for language modeling and vocabulary expansion.

4.2. Recognition system

For each language, we used tied-state triphone CD-HMMs,
with 2500 states and 18 Gaussian/state. Grapheme-based
dictionaries were used for the target languages. Note that for
IARPA-Babel languages, the difference between phonetic and
graphemic systems in WER are often less than 1% [19, 20].
All the output targets were from CD states. To train the mul-
tilingual SBN, we kept only the SIL frames that appear 5
frames before and after actual speech. This reduced the to-
tal amount of frames for the multilingual DNN to around 520
hours. We observed no loss in accuracy from doing so, and
it also reduced the training time significantly. Discrimina-
tive training was done on the CD-HMMs using the Minimum
Bayes risk (MBR) criterion [21]. The web data was cleaned
and filtered using techniques described in [22]. For language
modeling, n-gram LMs were created from training data tran-
scripts and the web data. The LMs were then combined using
weighted interpolation. The vocabulary included words that
appeared in the training transcripts augmented with the top
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30k most frequent words from the web. We chose 30k words
by looking at the rate of OOV reduction as we augmented the
train vocabulary with frequent words from the web. We report
results on the 10-hour development set.

We consider two baseline hybrid systems: a DNN with
three 1024-unit hidden layers, and a stacked LSTM with three
layers each containing 512 cells. No gains were observed by
further increasing the model size of these baseline systems.

In the PAC-RNN model, the prediction DNN has a 2048-
unit hidden layer and a 80-unit bottleneck layer. For the cor-
rection model, we have two systems: a DNN with two 2048-
unit hidden layers or an LSTM with 1024 memory cells. The
correction model’s projection layer contains 500 units.

All models are randomly initialized without either gener-
ative or discriminative pretaining. No momentum is used for
the first epoch and a momentum of 0.9 is used for all the sub-
sequent epochs. To train the DNN, a learning rate of 0.1 per
mini-batch is used for the first epoch and then increased to 1.0
at the second epoch, after which it is kept the same until the
development set training criterion no longer improves, under
which condition the learning rate is halved. A similar sched-
ule is used to train the LSTMs and PAC-RNNs except that all
the learning rates are reduced to 1/10 of that used in the DNN
training.

We implemented the hybrid models using the computa-
tional network toolkit (CNTK) [23]. The truncated back-
propagation-through-time (BPTT) [24] is used to update the
model parameters. To speed up the training, we process mul-
tiple utterances simultaneously as a batch. Each BPTT seg-
ment contains 20 frames and we process 20 utterances simul-
taneously. For decoding, we fed the posteriors generated by
CNTK into the Kaldi ASR toolkit [25], which then generates
the recognition results.

4.3. PAC-RNN results with BN features

Table 1 summarizes the WERs achieved with different mod-
els evaluated in this study. The first three rows are the results
from SBN systems. Both the multilingual and the closest
language systems are adapted to the target language for the
whole stacked network. For the hybrid systems, the input is
the BN features extracted from the first DNN of the adapted
multilingual SBN.

The DNN hybrid system outperforms the multilingual
SBN but is very similar to the closest language system. The
LSTM improves upon the DNN by around 1%. The PAC-
RNN-DNN outperforms LSTM by another percent across all
languages. By simply replacing the correction model with a
single layer LSTM, we observe even further improvements.

4.4. Effect of transfer learning on recurrent architectures

In this subsection we investigate the effect of the multilingual
transfer learning for each model. We first use the rich resource

Target language Cebuano Kurmanji Swahili
Closest language Tagalog Turkish Zulu
SBN models
Monolingual 73.5 86.2 65.8
Adapted multilingual 65.0 75.5 54.9
Closest language 63.7 75.0 54.2
Hybrid models
DNN 63.9 74.9 54.0
LSTM 63.0 74.0 53.0
PACRNN-DNN 62.1 72.9 52.1
PACRNN-LSTM 60.6 72.5 51.4
Hybrid models with closest language initialization
DNN 62.7 73.1 52.4
LSTM 61.3 72.5 52.2
PAC-RNN-DNN 60.8 71.8 51.6
PAC-RNN-LSTM 59.7 71.4 50.4

Table 1. WER (%) results for each ASR system.

closest language (based on the LID prediction shown in the
table) to train DNN, LSTM and PAC-RNN models, and then
adapt them to the target language. The lower part of Table 1
summarizes the ASR results. As shown, the LSTM models
perform significantly better than the baseline SBN system.
Using the PAC-RNN model yields a noticeable improvement
over the LSTM. Similarly, the PAC-RNN-LSTM can further
improve the results.

5. CONCLUSION

In this paper, we explored a PAC-RNN model for low-
resource language speech recognition. The results on multiple
languages demonstrated that the PAC-RNN achieves better
performance than DNNs and LSTMs. We also showed that
by replacing the correction model in the PAC-RNN with an
LSTM could further enhance the model. Moreover, the multi-
lingual experiment results show that traditional DNN transfer
learning approaches can also be applied to the PAC-RNN ar-
chitecture. Our future work includes applying the PAC-RNN
to tasks on which conventional models do not work well, and
extending it by predicting additional information such as the
speech signal, speaker, speaking rate, and noise.
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