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ABSTRACT

Deep Neural Networks (DNNs) trained on multilingual data have
proven useful for improving speech recognition in languages with
limited resources. In this framework, data from rich resource lan-
guages are pooled together to train a single system and then adapted
to a new language. However, data from a rich language that are sim-
ilar to the target language are generally more helpful. We explore
methods of training bottleneck features by using data that are more
similar to the target language. Our experiments on speech recogni-
tion and keyword spotting tasks with IARPA-Babel languages show
that our proposed methods outperform typical multilingual DNNs.

Index Terms— Multilingual, Bottleneck features, DNN, Data
selection

1. INTRODUCTION

Automatic Speech Recognition (ASR) has been receiving consid-
erable exposure recently. However, ASR capabilities are available
for less than 2% of the languages spoken around the world. This is
because traditional ASR development requires significant linguis-
tic resources in the form of annotated data for acoustic and lan-
guage modeling, and pronunciation dictionaries that are expensive
and time-consuming to produce. Given that ASRs perform best with
hundreds or thousands of hours of speech data, it is challenging to
obtain good performance with limited resources.

To address the resource limitation issues, many researchers are
exploring the use of out-of-domain acoustic resources, such as multi-
lingual corpora. Approaches such as in [1, 2] try to learn a common
lower-dimensional subspace across languages in order to reduce the
amount of parameters that need to be learned for a new language.
Another popular approach is multi-task training using DNNs. In
a multi-task setup, a single DNN is trained to generate outputs for
multiple languages with some tied parameters. This approach has
been used as a robust feature extraction via bottleneck (BN) features
[3, 4, 5, 6] or as classifiers in hybrid DNN-HMM approaches [7, 8].

When multilingual resources are rich and diverse, such as in the
IARPA-Babel program, one question that arises is how to best take
advantage of the resources. Although it can be beneficial to use more
of the available languages [9], there is also evidence that a source
language that is close to the target language is more beneficial than a
random one [10]. In our previous work [4], we proposed a method
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for adapting a multilingual DNN that can exploit such information.
We automatically identified the closest source language by the use
of Language Identification (LID), and then use it to re-train part of a
BN network before adapting to the target language.

The work presented here is an extension of our previous work
in [4]. We propose a method to identify a portion of the multilin-
gual data that is closer to the target and, thus, more beneficial for
multilingual adaptation. Experiments on the IARPA-Babel corpora
show that BN systems trained using the closest frames provide gains
in both ASR and keyword spotting. We also provide further analysis
on the usefulness of the DNN used for LID.

2. STACKED BOTTLENECK ARCHITECTURE

The BN features used in this work follow our previous work in [11].
A SBN is a hierarchical architecture realized as a concatenation of
two DNNs each with its own bottleneck layer. The outputs from
the BN layer in the first DNN are used as the input features for the
second DNN, whose outputs at the BN layer are then used as the
final features for standard GMM-HMM training.

2.1. Multilingual training of SBN features

There are several methods for training multilingual DNNs. In [12,
13], a multilingual phoneset is created, and all the phonemes from
the source languages are mapped to the set. The work in [13, 14]
shows that a simpler scheme of concatenating each language outputs
in the softmax layer can perform just as well. Furthermore, when
concatenating language outputs, normalizing the softmax layer in-
dividually within each language during training will yield slightly
better results [5, 9]. This training technique has also been applied
successfully to multilingual hybrid DNNs in [7, 8], and as a feature
extractor for hybrid DNNs [15]. In this work, we use this method for
training the multilingual DNN since it does not require mapping of
the phonesets and still provides state-of-the-art results.

When adapting the multilingual DNN to a new language, i.e.,
the target language, there often exists a limited amount of training
data in that language. Adapting the multilingual DNN using data
from the target language gives additional gain over the purely mul-
tilingual DNN. For hierarchical architectures, such as SBN, our pre-
vious work in [4] and an independent investigation in [10] seem to
suggest that the two DNNs in the SBN architecture behave differ-
ently in terms of adaptation. The first DNN extracts more language
independent cues from the acoustics, while the second DNN is more
language dependent and is more phonetically oriented. Our previ-
ous work [4] shows that using just the language closest to the target
language to train the second DNN can outperform the multilingual
second DNN. Thus, in this paper we will focus mainly on the train-
ing and adaptation of the second DNN.
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Fig. 1. Steps to adapt a multilingual SBN to a new language.

A flowchart of how a multilingual SBN is adapted to the target
language is shown in Fig. 1. The first DNN is adapted to the target
language by applying additional fine-tuning using the data from the
target language. The softmax is replaced by the target language state
labels with random initialization, while the hidden layers are initial-
ized from the multilingual DNN. After the first DNN converges, the
same procedure is applied to the second DNN.

3. LID FOR MULTILINGUAL TRAINING

3.1. Training from the closest source language

In [4] we devised a scheme for selecting better source languages
to train the SBN by relying purely on the acoustics. This can be
done by training a LID system from the pool of source languages
using DNNs. The output labels of the DNN are the language tags,
while the input are the stacked frames used as the input to the SBN.
Unlike typical DNN-based LID work, such as in [16, 17], we chose
to use the same input features as used in the SBN because we want to
ensure that the LID DNN decides which languages are similar based
on what the SBN would observe.

To identify the closest source language, we first train a LID DNN
to classify source languages. Given N source languages, we train the
DNN with N +1 output labels: One label for each language, and an
additional label for silence (SIL). SIL includes actual silence, noise,
cough, and laughter from every source language. The SIL label is
included to exclude non-language specific sounds from the scoring.
The language that is closest to the target language can be identified
by computing the average of posterior scores over all frames from
the target language. Note that sometimes the language closest to
the source language in the LID sense might not align with linguistic
knowledge. This can be due to channel and other non-speech effects.

To train the LID-based system, We start in the same manner as
the multilingual method by adapting the first DNN with the target
language. However, instead of using the second DNN of the multi-
lingual to initialize, we train the second DNN from random initial-
ization using the closest language’s data and output targets. While
it is usually the case that the target language does not have enough
data by itself to train a DNN from scratch, this should not be the case
for the source language1. Training from scratch is usually preferable
because the multilingual DNN is trained on data that could contain
irrelevant information with respect to the target language. A final
adaptation step is then done using the target language.

1We can always initialize from the multilingual DNN and adapt to the
closest language if the data for the closest language is not enough.

3.2. Frame selection

Data selection has been explored in many contexts, such as for semi-
supervised training where a portion of untranscribed data is selected
to re-train a speech recognizer [18, 19], or for active learning where
the goal is to select the smallest subset of data to transcribe that max-
imizes performance [20, 21, 22]. Our situation differs from these
prior approaches in that we want to select subsets of (transcribed)
data that are close to the target language. Thus, we do not select for
maximal variability. Also, since we have limited amounts of target
data, we prefer not to use a speech recognizer in the selection pro-
cess. Finally, we select at the frame level, rather than the utterance
level to maximize closeness at the phonemic level only.

In [4] we observed that selecting the closest subset from a par-
ticular source language can sometimes be more beneficial than us-
ing all of it. This offers some explanation to why the multilingual
SBN can perform worse than the closest language setup. However, it
has always been observed that in a multilingual setting, having more
source languages usually helps due to better coverage of phonemes
and acoustical phenomena, as well as the simple fact that there is
more data [10, 12]. From these observations we propose an improve-
ment over the closest language training scheme by selecting frames
from all source languages that are closest to the target language to
train the second DNN.

To select the closest frames from the multilingual pool, we need
a way to score and rank all the frames. We can do so by training N
frame selection DNNs, one for each source-target pair. Each frame
selection DNN is a two-class DNN where the training data are the
frames from the source and target languages with their correspond-
ing language labels. The score of a frame from any source language
is then the posterior probability of that frame coming from the tar-
get language computed by using the corresponding DNN. Although
each frame selection DNN is trained independently from the rest of
the source languages, we observe that the distribution in the rankings
of all source language frames correlates well with the scores given
by the LID DNN; the languages with higher LID scores have more
highly ranked frames.

We train N frame selection DNNs for the ranking instead of one
single DNN with N + 2 output labels (the sources, SIL, and the tar-
get) because the existence of a close language pair in the source pool
can skew the ranking of the frames. For example, consider the case
when the source languages are Assamese, Bengali, and Zulu, and
the target language is Telugu. Assamese, Bengali, and Telugu are
all Indian Languages, so we expect the frames from the Assamese
and Bengali to have higher probabilities of being Telugu than frames
from Zulu. However, since Assamese and Bengali are very similar
languages (more similar together than to Telugu), the posterior prob-
ability for an Assamese frame will mostly be biased towards Bengali.
On the other hand, a Zulu frame would have no such effect and may
have a higher posterior for Telugu.

After selecting the closest frames, the training procedure follows
the closest language method discussed in Section 3.1.

4. EXPERIMENTS

4.1. IARPA-Babel corpus

The IARPA-Babel program focuses on ASR and spoken term detec-
tion on low-resource languages [23]. The goal of the program is to
reduce the amount of time needed to develop ASR and spoken term
detection capabilities in a new language. The Babel corpus consists
of collections of speech from a growing list of languages. For this
work we will consider the Full pack (FLP) of 11 languages released
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Source Phones Tones Amount Speakers Wide-
Language (hours) band
Cantonese 37 6 72 952 no
Vietnamese 68 6 88 954 no
Tagalog 48 n/a 85 966 no
Pashto 44 n/a 78 959 no
Turkish 42 n/a 79 990 no
Bengali 53 n/a 62 720 no
Assamese 50 n/a 61 720 no
Zulu 47 n/a 62 718 yes
Haitian 32 n/a 67 724 yes
Tamil 34 n/a 69 724 yes
Lao 43 6 66 733 yes

Table 1. Source languages data. Wideband indicates whether the
language contains some amount of wideband recordings.

Target Language Cebuano Telugu Swahili
VLLP training data
Graphemes 27 57 28
Amount 3 3 3
Wideband yes yes yes
Vocab 3.7k 7.3k 5.4k
Speakers 358 362 371
Web data amount 38.0M 6.4M 16.2M
Testing data
Amount 10 10 11
Speakers 120 120 120
OOV rate 10.3 22.7 15.66
OOV rate (+web) 5.6 14.1 7.67
IV Keywords (+web) 1698 1469 1954

Table 2. Target languages used in this work. A keyword can be
multiple words. A keyword is considered to be In-Vocabulary (IV),
if the all the words in the keyword are IV. +web indicates values for
when web data are included.

in the first two years of the program as source languages, while the
languages in the third year will be the target languages. Some lan-
guages also contain a mixture of microphone data recorded at 48kHz
in both train and test utterances. For the purpose of this paper, we
downsampled all the wideband data to 8kHz and treated it the same
way as the rest of the recordings. For the target languages, we will
focus on the Very Limited Language Pack (VLLP) condition which
includes only 3 hours of transcribed training data. This condition
also excludes any use of human generated pronunciation dictionary.
However, usage of web data is permitted for language modeling and
vocabulary expansion. The list of languages and their properties can
be found in Tables 1 and 2.

4.2. LID DNN analysis

We start by analyzing the effectiveness of the LID DNN in identify-
ing the closest language. Fig. 2 shows a heat map of the averaged
posteriors for each dev set speaker in Cebuano generated by the LID
DNN. As shown by the figure, for the majority of the speakers, Taga-
log yields the highest posterior score. This makes sense because both
the Cebuano and Tagalog corpora were recorded in the Philippines.
Linguistically and acoustically (channel effects) they should be the
most similar. However, we also notice that the wideband recordings
from Cebuano prefers languages that also include wideband record-

Fig. 2. A heat map of the averaged posterior scores for each speaker
from Cebuano. Each row in the figure refers to a speaker. Each
column refers to the language output class. The speakers below the
red dashed line are from wideband recordings.

ings, while the languages without wideband recordings get little to
no posterior values. This is clear evidence that the LID DNN also
takes into account the acoustics as well as the linguistics, which can
be more preferable than just selecting the closest language based on
linguistic knowledge. This heat map also points out the need for se-
lecting just a portion of the data from a language, since the scores
can vary greatly due to different recording conditions.

We then evaluate the averaged posteriors for each target lan-
guage to identify the closest language, which we summarize in Fig.
3. To avoid the bias generated by the wideband recordings, we only
use the narrowband portion to compute the average. Cebuano identi-
fies Tagalog as the closest language followed by Lao. The top three
for Telugu are Tamil, Assamese, and Bengali which are all Indian
languages. Lastly, Swahili prefers Zulu. Thus, the LID DNN was
able to identify the linguistically appropriate languages without any
human knowledge.

4.3. Frame selection DNN analysis

We then analyze the posteriors generated by the frame selection
DNNs. Fig. 4 shows the posterior values averaged over all frames for
each source-target pair. The overall rankings from the LID DNN and
the frame selection DNN are similar. When Telugu is the target lan-
guage, Assamese, Bengali, and Tamil still remain noticeably higher
than the rest of the source languages. The highest match for Ce-
buano is now Assamese, but Tagalog follows closely behind. Lastly,
Zulu is still favored by Swahili. However, the scores are lower com-
pared to the other two target languages. This indicates that the source
languages might not be as helpful for Swahili. We also would like
to note that frames with phonemes that exist in the target language
tends to have higher posterior values than the ones that do not.

4.4. Recognition system

For each language, we used tied-state triphone CD-HMMs, with
2500 states and 18 Gaussian components per state. For the target lan-
guages we used a grapheme-based dictionary. Note that for IARPA-
Babel languages, the difference between phonetic and graphemic
systems in WER are often less than 1% [24, 25]. All the output tar-
gets of the SBN DNNs (including the multilingual SBN) were from
CD states. Discriminative training was done on the CD-HMMs using
the Minimum Bayes risk (MBR) criterion [26]. The web data was
cleaned and filtered using techniques described in [27]. For lan-
guage modeling, n-gram LMs were created from training transcripts
and the web data. The vocabulary included words that appeared in
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Method Cebuano Telugu Swahili
WER MTWV WER MTWV WER MTWV

Monolingual SBN 73.5 86.4 65.8
Adapted multilingual 65.0 0.2259 78.0 0.1269 54.9 0.3983
Closest language 63.7 0.2526* 75.8 0.1682* 54.2 0.4225
100 hr closest frames 63.0 0.2513 76.0 0.1711* 52.4 0.4244*
200 hr closest frames 63.1 0.2531* 76.0 0.1756* 52.4 0.4233
All frames 63.0 0.2376* 75.8 0.1528* 52.4 0.4262*

Table 3. ASR and KWS results. For MTWV, * indicates the value is significantly different from one in the row above (5% significance).
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the training transcripts augmented with the top 30k most frequent
words from the web.

4.5. Keyword spotting

Keyword Spotting (KWS) was done using a simplified version of
what was described in [28]. For this paper, we report the KWS done
using the development keywords (kwlist2) on the 10 hour dev set.
We report Maximum Term-Weighted Value (MTWV) as defined in
[29]. A perfect system will receive 1.0 MTWV, while a system that
produces no output will receive a score of 0. We did KWS on lattices
using exact word matches, since we wanted to focus more on the
difference in the recognizer. For this purpose, we only report in-
vocabulary (IV) keywords only.

4.6. Frame selection experiments

We compare the results between the three methods described ear-
lier, namely a multilingual SBN adapted to the target language, a
SBN trained by using the closest language as described in Section
3.1, and a SBN trained using frame selection. For frame selection,

we have two configurations with 100 hours and 200 hours worth of
closest frames. We did not go below 100 hours because there were
too many class outputs that had no or too few frames. We also re-
port the extreme situation where all 520 hours worth of frames are
selected. Note that this is slightly different than the adapted multilin-
gual SBN, since the second DNN for this case is trained on adapted
BN features from the first BN. As a point of comparison, we also
include a monolingual SBN trained only on the 3 hour VLLP data.

Table 3 summarizes the ASR and KWS results. Monolingual
SBNs perform significantly worse than multilingual techniques.
This shows the strength of using multilingual data to help ASR in
languages with limited resources. Using the closest source language
to train the second DNN yields a noticeable improvement over the
adapted multilingual SBN in both ASR and KWS. However, the gain
in WER is smaller for Swahili. This can be attributed to the fact that
the candidates for Swahili are worse than the other two languages,
as noted in Section 4.3. The WER differences between the closest
language and closest frames methods are small. However, we note
that the main goal of the Babel program, which typically operates in
high WER conditions, is KWS. Minor WER differences at this level
are sometimes misleading.

In terms of KWS, frame selection systems are significantly bet-
ter than the ones using just the closest language. The best perfor-
mance is achieved at 200 hours for Cebuano and Telugu, and 100
hours for Swahili because Swahili has lower frame selection scores.
The gain from frame selection over the closest language is higher in
Telugu than in Cebuano. Telugu has more than one closest language
so we expect more gain from using multiple languages. Frame se-
lection scores for the case of Telugu are also higher than Cebuano
signifying better synergies between the source and target language.
Finally, using all frames performs worse than any kind of selection
except for the case of Swahili where the frame selection scores are
noticeably lower so the effect of having more data prevails. We be-
lieve that both the amount and the closeness of the data play a role
in determining the benefits from multilingual training.

5. CONCLUSION

We investigated a method to select a subset of multilingual data that
would be most beneficial to train a BN feature extractor on a target
language. By selecting the closest frames as scored by the frame
selection DNNs, we not only were able to improve over using an
adapted multilingual SBN, but also improve over our previous ap-
proach which uses just the closest language. For future work, we
plan to investigate the framework for alternative setups, such as hy-
brid DNN-HMM, and Long-Short Term Memory networks. We also
would like to look into the possibility of selecting frames from just
a set of closest languages which can help decrease the training time.
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