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ABSTRACT

We present a recipe for training acoustic models with context de-
pendent (CD) phones from scratch using recurrent neural networks
(RNNs). First, we use the connectionist temporal classification
(CTC) technique to train a model with context independent (CI)
phones directly from the written-domain word transcripts by align-
ing with all possible phonetic verbalizations. Then, we devise a
mechanism to generate a set of CD phones using the CTC CI phone
model alignments and train a CD phone model to improve the accu-
racy. This end-to-end training recipe does not require any previously
trained GMM-HMM or DNN model for CD phone generation or
alignment, and thus drastically reduces the overall model building
time. We show that using this procedure does not degrade the per-
formance of models and allows us to improve models more quickly
by updates to pronunciations or training data.

Index Terms— Flat start, CTC, LSTM RNN, acoustic model-
ing.

1. INTRODUCTION

Most modern large scale vocabulary speech recognition systems
employ neural network acoustic models which are commonly feed-
forward deep neural networks (DNNs) or deep recurrent neural
network (RNNs) such as Long Short Term Memory (LSTM) [1, 2].
These ‘hybrid’ models assume a Hidden Markov Model (HMM)
for which the neural network predicts HMM state posteriors [3]. A
recent variation of LSTM-HMM, CLDNN [4], uses convolutional
layer in addition to LSTM layers and has proven to perform bet-
ter than LSTM RNNs. However, all these acoustic models trained
with cross entropy (CE) loss require an alignment between acoustic
frames and phonetic labels, which could be obtained from a Gaus-
sian mixture model (GMM) [5, 6] or a neural network (initially
aligned with a GMM-HMM). The bootstrapping model is used in
two ways; for generating alignments and for building context de-
pendency tree. GMM-HMM can be ‘flat started’ from the phonetic
transcriptions [7], and the phone alignments from the initial GMM-
HMM can be used to build context dependent phone models for
improving accuracy.

The conventional neural network acoustic models require train-
ing a GMM-HMM and sometimes even an initial neural network to
get better alignments. These iterations can take a long time, often
a few weeks. A lengthy acoustic model training procedure not only
delays the deployment of improved models but also hinders timely
refresh of acoustic models. Being able to flat start an LSTM RNN
is desirable since it eliminates the need for a GMM, simplifying and
shortening the training procedure. A GMM-free training approach
for DNN-HMM is described in [8] where DNNs are flat started and
their alignments are used for building CD state-tying trees. In this

paper, we describe a flat start procedure for LSTM RNNs trained
with the CTC objective function.

The CTC technique has been shown to be very successful at
phoneme recognition on the TIMIT dataset using deep bidirectional
LSTM RNNs [9]. Unidirectional CTC based acoustic models have
also been shown to outperform the state-of-the-art in large vocabu-
lary speech recognition [10]. CTC models have the advantage of not
needing alignment information as they can be trained directly with
phonetic transcription. However, phonetic transcription of words
cannot be obtained readily from the text transcription since there
might be multiple verbalizations of the same word, e.g. ‘10’→ ‘ten’
or ‘one oh’, and further each verbal word may have multiple valid
pronunciations. Thus, a text transcription may have many valid pho-
netic transcriptions. The true spoken phoneme labels can be obtained
by aligning the audio and the alternative pronunciations with an ex-
isting acoustic model, however, this relies on training a GMM-HMM
or DNN-HMM which results in the same lengthy training procedure
as with the conventional neural network models.

In this paper, we show that we can train RNN phone acoustic
models using the CTC technique directly from transcribed audio and
text data without requiring any fixed phone targets generated from a
previous model. We also outline a mechanism to build a CD phone
inventory using a CTC based phone acoustic model. Using these
techniques we can flat start training a CTC phone model which is
used to build a CD phone inventory, and finally, we can train a CTC
CD phone model and show that it outperforms our previous best
CLDNN models for various languages. We also show how this pro-
cedure can be useful to quickly refresh acoustic models whenever
other components of the speech system (such as the pronunciations)
are updated.

In section 2, we describe the CTC algorithm and how we adapt
it for flat start. In section 3, we outline the end-to-end flat start CTC
procedure for training acoustic models from scratch including gen-
erating the CD phones from a CTC CI model. Section 4 details our
experimental setup with the results in section 5. Finally, in section 6
we discuss the results of the flat start CTC training approach.

2. CONNECTIONIST TEMPORAL CLASSIFICATION

The connectionist temporal classification (CTC) approach is a learn-
ing technique for sequence labeling using RNNs [9]. It can learn an
alignment between the input and target label sequences. Different
from conventional alignment learning, the CTC introduces an addi-
tional blank output label which the model can choose to predict for
relaxing the decision of labeling each input. It is ideal for acoustic
modeling since labeling each acoustic frame phonetically is not re-
quired for speech decoding. A CTC based acoustic model may listen
to several acoustic frames before outputting a non-blank label (pho-
netic unit in this case). A more detailed discussion of how CTC may

5405978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



be used for acoustic modeling is given in [11, 10].
The CTC loss function tries to optimize the total likelihood of

all possible labelings of an input sequence with a target sequence. It
calculates the sum of all possible path probabilities over the align-
ment graph of given sequences using the forward backward algo-
rithm. The alignment graph allows label repetitions possibly inter-
leaved with blank labels. When applied to acoustic modeling in
this sequence labeling framework, this approach requires phonetic
transcriptions of utterances which necessitates a previously trained
acoustic model. Any significant change in training (such as updates
to training data or word pronunciations) would require re-training all
the acoustic models starting from the initial model used to obtain the
phonetic transcriptions.

2.1. CTC for Flat Start

The CTC technique can be easily extended to align an input se-
quence with a graph representing all possible alternative target la-
bel sequences. This is useful, for instance, in flat start training of
acoustic models where we have word level transcripts in written do-
main for training utterances but we do not know actual verbal forms
of the words and phonetic transcriptions of an utterance. Note that
there can be more than one possible verbal expansions of words and
similarly phonetic pronunciations of words. We extend the CTC ap-
proach to learn a probabilistic alignment over all possible phonetic
sequence representations corresponding to all the verbal forms of a
written text transcript.

The conventional CTC technique can be implemented using fi-
nite state transducer (FST) framework by building an FST represen-
tation, P , for a given target phone sequence and another auxiliary
transducer, C, allowing for optional blank label insertions and actual
label repetitions. Then, the composed transducer C ◦ P represents
a graph which can be used to align the input (see [11] for more de-
tails). We alter this prescription for flat start training of CTC models
by using C ◦ L ◦ V ◦ T , where T is the FST representation for the
given target word level transcript, V is a verbalization FST [12], L is
a pronunciation lexicon FST. Given the pronunciation and verbaliza-
tion models as L and V we can train acoustic models directly from
the acoustic data and corresponding word transcripts in the written
form using the forward backward algorithm to align the input with
this composed FST representation.

To ensure that flat start training of CTC acoustic models does
not degrade the accuracy, we compared the performance of a CTC
model trained with phonetic alignments generated by a DNN model
and found it to be exactly the same as the CTC model trained with
the flat start technique. The major advantage of flat start is that it
does not require any previous model which is more convenient and
reduces the overall training time.

3. CTC FLAT START TRAINING PROCEDURE

In this section we outline an end-to-end procedure to quickly train
and refresh acoustic models using the flat start training of CTC mod-
els in the following steps:

1. A bidirectional LSTM RNN model, BLSTM-CTC-CI, is
trained with the flat start CTC technique to predict phonemes.
This model is used as an intermediate model since our objec-
tive is to train unidirectional models for real-time streaming
speech recognition.

2. This BLSTM-CTC-CI is used to align the acoustic model
training data to obtain the phonetic alignments and the statis-

tics associated with the phone spikes are used to create
context-dependent phones.

3. A unidirectional LSTM RNN, CD-CTC-sMBR, is trained
with the flat start CTC technique to predict these context-
dependent phones. This is the final model used for speech
recognition.

3.1. Training BLSTM-CTC-CI Models

Speech recognition systems typically predict context-dependent la-
bels such as triphones since the added context restricts the decoding
search space and results in better word error rates. However, in or-
der to build a CD phone inventory we first train a CI phone acoustic
model.

We train a bidirectional LSTM (BLSTM) using flat start CTC to
predict context-independent (CI) phone labels. As mentioned earlier,
this step only requires a pronunciation model, a verbalization model
and transcribed acoustic model training data. The performance of
this BLSTM-CTC-CI model is measured by its phoneme error rate.

This bidirectional model is used only to generate statistics about
context-dependent phone labels which can be used to establish a CD
phone inventory. We train this CI model as a bidirectional network
since they perform better than unidirectional models, are faster to
train, and the alignments better matches the actual timing of acoustic
frames. We cannot use this bidirectional model for speech recogni-
tion since we require unidirectional models for streaming recogni-
tion results for latency reasons.

3.2. Building CD Phones

Once the BLSTM-CTC-CI has reached a reasonable phoneme error
rate (which typically takes less than 1 day), we re-align the data to
generate the CD phones. Previously, it was shown that it is pos-
sible to build context dependent whole-phone models, and that for
LSTM-HMM hybrid speech recognition, these models can give sim-
ilar results to context dependent HMM state models, provided that a
minimum duration is enforced [13]. We repeat that procedure, using
the hierarchical binary divisive clustering algorithm [7] for context-
tying. Using the trained BLSTM-CTC-CI, we do a Viterbi forced
alignment to get a set of frames with phone labels (and many frames
with blank labels), and find sufficient statistics for all the frames
with a given phone label and context. The sufficient statistics are
the mean and diagonal covariance of input log-mel filterbanks fea-
tures for labelled frames. If two or more frames are aligned for a
phoneme we only use the initial frame to generate statistics, varia-
tions of this approach were tried (such as using all frames) but these
did not affect the performance of the system. One tree per phone
is constructed, with the maximum-likelihood-gain phonetic question
being used to split the data at each node. The forest consisting of all
phone-trees is pruned to a fixed number of CD phones by merging
the two CD phones with the minimum gain. We find that beyond a
certain number (500 for Russian) having more CD phones does not
improve the accuracy (see Table 1) and thus pick the smallest CD
phone inventory with the best performance.

Although the CTC does not guarantee the alignment of phone
spikes with the corresponding acoustic input frames, we find the
alignments of a bidirectional model to be generally accurate. How-
ever, this is not true for the unidirectional phone models that we
trained which generally choose to delay its phone predictions (typ-
ically around 300 ms). Figure 1 shows such an alignment for an
example utterance. The CTC phone spikes are close to the phone
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Fig. 1: The timing of CI phone spikes from a BLSTM-CTC-CI
model for an example utterance with the transcript ‘museums in
Chicago’. The x-axis shows the phonetic alignments as obtained
with a DNN model and y-axis shows the phone posteriors as pre-
dicted by the CTC model. The CTC phone spikes are found to be
close to the time intervals of DNN phone alignments.

time intervals obtained by aligning with a DNN model that uses a
large context window (250 ms).

Number of CD Phones WER (%)
50 17.0

100 16.9
500 16.7

1000 16.7
2000 16.7
5000 16.7

Table 1: The WERs for CTC models trained with various numbers
of CD phones for Russian (without sequence discriminative train-
ing).

3.3. Training CD-CTC-sMBR Models

Using the generated CD phone inventory, we train a unidirectional
CTC model predicting these CD phones. We build a context de-
pendency transducer, D, from the CD phone inventory, that maps
CD phones to CI phones. Then, we can repeat the flat start tech-
nique with CTC for CD phones using the composed transducer graph
C ◦D ◦ L ◦ V ◦ T . After the CTC model training converges fully,
we further improve it by training with the sMBR sequence discrimi-
native criterion as described in [2, 11, 10].

One may choose to train a bidirectional CD phone model, how-
ever, such a model does not allow for streaming recognition results.
In this paper, we do not consider the bidirectional models for speech
recognition and only compare the WERs of unidirectional models.

4. EXPERIMENTAL SETUP

All the LSTM networks are trained on a 3 million utterance dataset
consisting of anonymized and hand-transcribed audio utterances.
To ensure our approach is language-independent, we repeat our
experiment with Hindi, Russian and Brazilian Portuguese. We
compute acoustic features as the 80-dimensional log mel filterbank
energy every 10ms, eight such features are stacked resulting in a
640-dimensional input feature vector for the CTC models. We skip
two in every three such vectors. This results in a single input feature
vector every 30ms. This mechanism of frame stacking and skipping
has been optimized for CTC acoustic models and is identical to the
setup in [10].

We clip the activations of memory cells to range [-50, 50], and
their gradients to [-1, 1] This makes training with CTC models sta-

ble. For the BLSTM-CTC-CI model we use a deep LSTM RNN
with 5 layers of forward and backward layers of 300 memory cells,
the CD-CTC-sMBR LSTM is a 5-layer deep RNN with forward lay-
ers of 600 memory cells. CTC training for all models is done with
a learning rate of 0.0001 with an exponential decay of one order of
magnitude over the length of training.

We ensure robustness to background noise and reverberant envi-
ronments by synthetically distorting each training example in a room
simulator with a virtual noise source. Noise is taken from the audio
of YouTube videos. Each training example is randomly distorted to
get 20 variations. This ‘multi-condition training’ also prevents over-
fitting of CTC models to training data. To estimate the performance
of acoustic models we create Noisy versions of our test sets similarly.

The final trained models are evaluated in a large vocabulary
speech recognition system on a test set of roughly twenty thousand
hand-transcribed, anonymized utterances. For all the decoding ex-
periments, we use a wide beam to avoid search errors. After a first
pass of decoding using the CTC models with a 5-gram language
model heavily pruned, lattices are rescored using a large 5-gram lan-
guage model.

All models are evaluated based on their word error rate (WER)
on the clean and noisy test sets.

5. RESULTS

We compare the models obtained by the flat start CTC training pro-
cedure to our state-of-the-art CLDNN models. The training and eval-
uation datasets for both systems are identical.

5.1. Word Error Rate on Test Sets

We compare the performance of the CD-CTC-sMBR models ob-
tained using the flat start CTC to CLDNN-sMBR models. The flat
start CTC models generally outperform the CDLNN in terms of
WER for the languages we tested; Russian, Hindi and Brazilian Por-
tuguese. The improvements in WER are similar for clean and noisy
test sets. For Brazilian Portuguese we found a CD phone inventory
of size 2000 performed best, while Hindi and Russian only required
500 CD phones. Table 2 reports the final WER after sequence dis-
criminative training.

CLDNN-sMBR CD-CTC-sMBR LSTM
TestSet Clean Noisy Clean Noisy
Hindi 27.4 35.6 26.7 33.9

Russian 14.7 25.4 14.7 24.4
Brazilian Portuguese 11.8 20.4 11.7 19.5

Table 2: WER for the CLDNN-sMBR versus the CD-CTC-sMBR
on clean and noisy test sets for Russian, Hindi and Brazilian Por-
tuguese.

5.2. Impact on Real Traffic

To measure the impact of the flat start CTC models beyond the
offline test sets, we recognize utterances from real traffic using the
baseline model (CLDNN-sMBR) and the CD-CTC-sMBR model.
From these we randomly sample 1000 utterances with different
recognition results from these two systems and ask human raters
to label each result as either Nonsense, Unusable, Usable or Exact.
Figure 2 shows the distributions of these ratings for both systems for
Hindi traffic. The CD-CTC-sMBR model rated higher with more
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Exact and Usable recognitions and fewer Nonsense and Unusable
recognitions compared to the CLDNN-sMBR.
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Fig. 2: Human ratings for randomly sampled Hindi utterances rec-
ognized by the CD-CTC-sMBR versus the CLDNN-sMBR.

6. DISCUSSION

6.1. Learning Multiple Pronunciations

With flat start CTC we no longer provide fixed phoneme targets dur-
ing CTC training, instead, all possible valid pronunciations for the
given transcript are available to the network. The network can de-
cide which of the valid pronunciations to predict for a given training
example. To confirm that the network is indeed able to utilize these
multiple valid pronunciations we count the usage of pronunciation
variants for a few example words, see Table 3.

Word either gyro
Frequency 128 77

Pronunciations i D @’ aI D @’ dZ aI r oU j i r oU
Frequency 111 17 66 11

Table 3: The frequency of example words with multiple valid pro-
nunciations in the training data and the frequency of the pronuncia-
tion outputted by the flat start CTC model.

6.2. Acoustic Model Refresh

Three major components comprise a speech recognition system;
acoustic, pronunciation and language models. Although during in-
ference all these models are used together they are generally trained
and improved independently, and often an improvement in one sys-
tem may necessitate refreshing the others. A common example of
this when new word pronunciations are added, the acoustic models
may need to be refreshed to take advantage of them. In this section,
we examine one such scenario for Hindi.

We find a WER regression (27.4→ 28.2) when we add 40,000
new human-transcribed Hindi pronunciations to our system, this can
happen if there is a mis-match between the pronunciations used dur-
ing evaluation and those used during acoustic model training. The
pronunciations used during acoustic model training may contain in-
correct pronunciations (possible if they are generated using an au-
tomated tool), then the acoustic model will learn to predict these
incorrect phonetic transcriptions. If, at a later time, these incor-
rect pronunciations are corrected then a WER regression may re-

Acoustic Model Pronunciation Model WER
CLDNN-sMBR Baseline 27.4
CLDNN-sMBR Updated 28.2

CD-CTC-sMBR LSTM Baseline 26.7
CD-CTC-sMBR LSTM Updated 26.4

Table 4: The performance of CLDNN-sMBR and flat started CD-
CTC-sMBR LSTM models for Hindi with a baseline pronunciation
model and an updated one where 40,000 new pronunciations are
added. It should be noted that the same CLDNN-sMBR is shown
with the baseline and update pronunciations while a new CD-CTC-
sMBR LSTM is flat started for each set of pronunciations.

sult from a mis-match between the pronunciation and acoustic mod-
els. A refresh of the acoustic model is required to take advantage of
the 40,000 new Hindi pronunciations. We can re-train the CLDNN-
sMBR with the new pronunciations, however, this would first require
us to re-train the GMM since the alignments would be different with
the new pronunciations. Instead, we use the flat start CTC proce-
dure to quickly update our acoustic models, which does not require
a GMM. We flat start two CTC CD phone models using the baseline
and new pronunciations. The CTC CD model with the baseline pro-
nunciations improves on the CLDNN-sMBR trained with the same
pronunciations, see Table 4, this improvement is due to the CTC-
CD-sMBR versus CLDNN-sMBR technology (as already discussed
in section 5). However, the CTC CD model flat started with the
new pronunciations further improves the recognition (26.7→ 26.4)
showing that these new pronunciations are indeed beneficial and re-
quired an acoustic model refresh. We expect to see similar improve-
ments if we refreshed the CLDNN-sMBR model, however, here we
show how flat start CTC makes the refresh simpler and faster, with-
out the need for re-training a GMM.

7. CONCLUSION

We have extended the CTC training technique to allow training
of phoneme models directly from written transcripts. We use this
mechanism to train a bidirectional CTC phone model which is
used only to generate a CD phone inventory. We then train a CD-
CTC-sMBR LSTM RNN model using this CD phoneme inventory
and show that they perform better than the current state-of-the-
art CLDNN-sMBR models. We have shown that this approach is
language independent with improvements for all languages tested;
Russian, Hindi, Brazilian Portuguese. The end-to-end flat start CTC
training procedure is faster than training a GMM-HMM model to
bootstrap and train a neural network model. Using this flat start CTC
procedure one can train and refresh state-of-the-art acoustic models
from scratch in a relatively short time.
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