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Abstract

In subject independent acoustic-to-articulatory inversion (SII), the

training and test subjects are in general different, whereas subject

dependent inversion (SDI) uses the same training and test sub-

jects. Thus, acoustic normalization is used to compensate for the

mismatch between the training and the test subjects in SII. We

show that a better acoustic normalization not only results in better

articulatory estimates using SII, but also improves the broad class

phonetic recognition accuracy, when the articulatory features esti-

mated from SII are used for recognition. Recognition experiments

using male and female subjects from the MOCHA-TIMIT corpus

also show that there is no significant difference between the recog-

nition accuracy using the articulatory features obtained by the best

acoustic normalization in SII and that obtained using SDI as well

as directly measured articulatory features.

Index Terms: broad class phonetic recognition, acoustic-to-

articulatory inversion, subject independent inversion, acoustic

normalization

1. Introduction

Kinematics of speech articulators (e.g., lips, jaw, tongue, velum)

recorded during speech production are known to provide cues for

automatic speech recognition (ASR) [1, 2]. These articulatory fea-

tures are also known to provide information complementary to

acoustic features obtained from the speech signal [3]. Record-

ing articulatory kinematics is not convenient in practice unlike

recording of speech signal. This hinders the use of directly mea-

sured articulatory data for ASR. In the absence of directly mea-

sured articulatory features, estimating them from the speech sig-

nal becomes a plausible option. The task of estimating articula-

tory features from acoustic representation is known as acoustic-

to-articulatory inversion (AAI) [4]. AAI can be of two types:

1) subject-dependent inversion (SDI), where acoustic-articulatory

data from the test subject is available for training AAI algorithm

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14], 2) subject-independent inversion

(SII) [15, 16, 17], where the test subject can in general be differ-

ent from the training subject. SII is more challenging compared to

SDI due to the mismatch between the training and test subjects. At

the same time, SII is more appropriate compared to SDI when the

estimated articulatory features are to be used for ASR on any arbi-

trary test subject, because the acoustic or articulatory data from the

test subject may not be available a-priori. Thus, in this work we

conduct speech recognition using articulatory features estimated

using SII.

Acoustic normalization is used to compensate for the mis-

match between the training and test subjects’ acoustics in SII

[16, 17]. This is done by constructing a probability feature vector

by transforming the acoustic features of train and test subjects on a

generic acoustic space (GAS) consisting of a large pool of acous-

tic features from multiple speakers [16]. GAS may not include the

acoustic data of the training and test subjects of SII. The proba-

bility feature vectors of two subjects are comparable unlike their

acoustic feature vectors. It has been shown that the acoustic nor-

malization in SII can be improved by appropriately choosing the

acoustic units in GAS [17]. For example, the phonetic units are

found to be more effective for normalization compared to acous-

tic units obtained by unsupervised clustering. Similarly, when the

states of a phonetic hidden Markov model (HMM) are used as the

acoustic units, the acoustic normalization is even better compared

to that using the phonetic units [17]. Better acoustic normaliza-

tion, in turn, results in better estimates of the articulatory features.

Although the effect of different acoustic normalizations in SII

has been studied on the quality of the estimated articulatory fea-

tures [17], it is not clear how the ASR performance would change

when the estimated articulators using different acoustic normal-

izations in SII are used for recognition. In this work, we study

the effect of different acoustic normalizations on broad class pho-

netic recognition accuracy, the recognition being done based on

the estimated articulatory features. The goal is to compare the

amount of phonetic cues present in the articulatory features ob-

tained using different acoustic normalization techniques. We also

compare the recognition accuracies obtained by the articulatory

features estimated from SII with those estimated from SDI as well

as the directly measured articulatory features.

Broad class phonetic recognition experiment reveals that a

better acoustic normalization leads to a better recognition accu-

racy. This suggests that when the estimated articulatory features

match the original ones, they also provide more discrimination

among broad phonetic classes. It is also found that, on an average,

the recognition accuracy obtained by the articulatory features es-

timated using the best acoustic normalization technique in SII is

better than that using SDI. Interestingly, the recognition accuracy

using articulatory features from SII is found to be similar to that

using the directly measured articulatory features. All these find-

ings indicate the potential of the articulatory features estimated

using SII for phonetic recognition.

We begin with the description of the dataset and the acoustic

and articulatory features. In section 3, we briefly describe differ-

ent acoustic normalization techniques used for comparison in this

work. The recognition experiments and results are discussed in

section 4. Conclusions and future works are summarized in sec-

tion 5.

2. Dataset and features

For the recognition experiments and AAI in our work, we have

used the Multichannel Articulatory (MOCHA) database [18]. This
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Figure 1: Illustration of EMA sensors’ placement

database has one male and one female talker of British En-

glish. The dataset comprises of the parallel acoustic and artic-

ulatory kinematics recordings using electromagnetic articulogra-

phy (EMA) corresponding to 460 utterances spoken by each of

the subjects. We use 39-dimensional Mel frequency cepstral co-

efficients (MFCCs) along with their velocity and acceleration co-

efficients as the acoustic features. These MFCCs are calculated

using a 20 ms frame length and a 10 ms frame shift. The ar-

ticulatory features which we use are 14-dimensional raw EMA

features (i.e., X and Y co-ordinates of the upper lip (UL), lower

lip (LL), lower incisor (LI), tongue tip (TT), tongue body (TB),

tongue dorsum (TD), and velum (V)). Along with the articulatory

positions, we also use their velocity and acceleration values, hence

42-dimensional articulatory feature vector is used. For illustration,

EMA sensors’ placement on these articulators is shown in Fig. 1.

As the mean position of articulators changes in every utterance,

we perform a pre-processing on the EMA data following the steps

outlined in [19].

For the SII, we use TIMIT database [20] as GAS. This is be-

cause the best SII performance was reported using TIMIT as the

GAS [17]. The TIMIT corpus comprises of recordings in a quite

environment for ten sentences each spoken by 630 speakers. The

corpus contains eight major dialects of American English. As the

‘sa1’, ‘sa2’ recordings are for speaker calibration in TIMIT cor-

pus, we have excluded them resulting in 5040 recordings, span-

ning a total duration of ≈4.29h.

3. Acoustic normalization in subject
independent inversion

Let us denote the training data for inversion by

{(zi,xi); 1 ≤ i ≤ T}, where i is the frame index, T de-

notes the duration of the test utterance in number of frames

and z and x denote the acoustic and articulatory feature vectors

respectively. Let the acoustic feature vectors for the test utterance

be un, 1 ≤ n ≤ N , where N is the total number of frames

of the utterance. In SII, following the principle of generalized

smoothness criterion (GSC) [21], the articulatory feature vectors

y
⋆
n, 1 ≤ n ≤ N for the test utterance are estimated. GSC

imposes articulator specific smoothness in inversion.

In GSC the j-th articulatory trajectory
{

yj⋆
n ; 1 ≤ n ≤ N

}

is

estimated using the acoustic features zi which are close to un in

the Euclidean sense. But in case of the subject-independent (SI)

setup, there is a mismatch between the acoustics of the train and

test subjects. To overcome this, several normalization techniques

are proposed by Afshan et al [17], which uses GAS as outlined by

Ghosh et al. [16]. Let the acoustic feature vectors of the GAS be

given by the set A = {cr; 1 ≤ r ≤ R}. We use K subsets of A
, determined either in supervised or unsupervised manner denoted

by Ak . Each acoustic subset is then represented by its probability

density function (PDF) of the acoustic feature vectors using an

M -component Gaussian mixture model (GMM).

The posterior probability feature vector1 Φ(v) for an acoustic

1We assume that the prior probabilities of all the subsets Ak , k =

1, ...K are equal

feature vector v, is defined as follows:

Φ(v)
△
=

1

Z
[p(v|A1) · · · p(v|AK)]T , (1)

where Z =

K
∑

k=1

p(v|Ak)

is a normalization term. ‘T’ denotes the vector transpose operator.

Thus, Φ(v) is a K dimensional vector representing the likelihood

of v given each of the K subsets in the acoustic space. Φ(v)
is typically a sparse vector with the highest value at the element

corresponding to the acoustic subset which gives the maximum

likelihood of the acoustic feature v. In SII, the closeness between

the test acoustic feature vector un and a training acoustic feature

vector zi is measured using Φ(un) and Φ(zi) [17]. By measuring

the closeness between Φ(un) and Φ(zi) for all training acoustic

features, the L closest acoustic feature vectors from the training

set are obtained and the corresponding articulatory feature vectors

are used in GSC for inversion.

To make the process of estimation computationally efficient,

subsets Bk, 1 ≤ k ≤ K in the training corpus are created fol-

lowing the acoustic subsets Ak in the GAS. Given a test acous-

tic feature vector un, we select the best matching subset Bk̂
{

(zk̂i ,x
k̂
i ); 1 ≤ i ≤ Tk̂

}

, where Tk̂ is the number of frames in the

k̂-th subset of the training corpus. The articulatory feature vectors

in Bk̂ are used in GSC for inversion (i.e., L = Tk̂ ).

Several SII schemes were proposed by Afshan et al.[17].

These schemes typically vary depending on how acoustic subsets

Ak as well as Bk̂ are formed. We use three among these schemes

for comparison in this work. They are briefly described in the

following subsections.

3.1. Inversion scheme - IS1

IS1 is similar to the SII scheme proposed by Ghosh et al. [16]. In

IS1, a K-means clustering of the acoustic feature vectors of GAS

(i.e., the set A) is performed to obtain the acoustic subsets Ak.

The subset Bk =
{

(zki ,x
k
i ); 1 ≤ i ≤ Tk

}

in the training corpus is

determined by the subset of zi which yields the highest likelihood

given the k-th acoustic cluster Ak compared to all other clusters.

The estimation of Bk̂ given a test acoustic feature vector un

is done by finding k̂ such that the likelihood of un is maximum

given the Ak̂ among all acoustic clusters as follows:

k̂ = arg max
1≤k≤K

p(un|Ak) (2)

Thus, the acoustic clusters in GAS are obtained in an unsupervised

way in IS1. The subsets Bk in the training corpus are formed such

that each subset is acoustically similar to one acoustic cluster in

GAS. Given the test acoustic feature vector un we first find which

acoustic cluster k̂ in GAS it is most likely to have come from as

shown in (2) and then the corresponding subset Bk̂ in the training

corpus is used for computing possible articulatory feature values

and their probabilities
{

ηl
n, p

l
n; 1 ≤ l ≤ L

}

required for GSC .

3.2. Inversion scheme - IS3H

In IS3H, 3-state left-to-right phonetic HMMs are trained using the

speech and the corresponding transcripts of the GAS and then a

forced-alignment of the utterance is performed with the phonetic

transcription of the text. Feature vectors in GAS with identical

phonetic state label are used to form acoustic clusters. Since gen-

erating Ak requires transcription along with the speech acoustic
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Figure 2: Experimental setup of the speech recognition using ar-

ticulatory features estimated from inversion

signal, the acoustic subsets in GAS are found to be more repre-

sentative of the actual sub-phonetic clusters compared to those

obtained by unsupervised clustering as in IS1 [17]. This helps

in achieving better normalization in SII using GAS. The subset

Bk is obtained by running a Viterbi decoding on each training ut-

terance using the HMMs trained on the GAS and determining the

frames corresponding to states of the phonetic HMMs. Similarly,

Bk̂ is estimated by running a Viterbi decoding on the test utterance

using HMMs trained on GAS.

3.3. Inversion scheme - IS3A

IS3A is similar to IS3H except that before computing Bk and Bk̂

the parameters of HMMs trained on GAS are adapted using the

training and test acoustics. Due to adaptation, it was found that

acoustic normalization in IS3A is better than that in IS3H leading

to better SII performance. In fact, IS3A was reported to be the

best performing SII scheme by Afshan et al. [17].

4. Experiments and results

4.1. Experimental setup

Fig. 2 shows the block diagram of the experimental setup for

the inversion and recognition using articulatory features estimated

from inversion. The train subject’s acoustic and articulatory data

are used to train the inversion system, which is used to estimate

articulatory features from test subject’s speech signal. In order

to perform recognition using the estimated articulatory features,

the set of estimated articulatory features are split into training and

test sets. Features from the training set are used to build three

state left-to-right phonetic HMMs. These trained HMMs are used

to perform the phonetic recognition on the estimated articulatory

features from the test set.

Note that the inversion block could be based on either SII or

SDI schemes. Also the training and the test subjects could be

same or different resulting in a subject dependent (SD) or SI setup.

When the SDI scheme is used in an SD setup, it is referred to as

ISm1. Similarly, when the SDI scheme is used in an SI setup, it is

referred to as IS0. The SII schemes used in the SI setup are IS1,

IS3H, and IS3A as explained in Section 3. The acoustic clusters

in IS1 are obtained with K=39. In IS3H and IS3A, we use 117

(39 × 3) acoustic clusters. We use 256 mixture components in

each acoustic subset GMM for all the SII schemes. In IS3A, the

adaptation is done following a supervised adaptation frame-work

involving a static two-pass adaptation approach based on MLLR

adaptation [22]. We use the entire available test subject’s acoustics

for the adaptation.

For ISm1 and IS0, we use GMM based AAI [23], where

the articulatory features are estimated using the minimum mean

squared error (MMSE) criterion. Since ISm1 uses an SDI scheme

in SD setup, the inversion performance obtained from ISm1 may

indicate an upper bound on the performance from any SII scheme.

On the other hand, IS0 represents a baseline – it reflects the per-

formance of the traditional SDI scheme when the training and test

subjects are not matched.

Since there are only 460 utterance recordings for each subject,

the number of frames for several fine class phonemes turns out to

be small, which is insufficient for building a good statistical model

for each phoneme required for a fine class phonetic recognition.

Hence, following the work by Sainath et al [24], we combine the

fine class phonemes into four broad classes, namely VOWELS,

STOPS, FRICATIVES, NASALS as shown in Table 1. To obtain

the ground truth broad class phonetic boundaries, we perform a

fine class phonetic forced-alignment (using 39 phoneme set [25])

using HMM Tool Kit (HTK) [26] and the available transcriptions

of the utterances spoken by the MOCHA-TIMIT subjects. The

fine class phonetic boundaries thus obtained are manually checked

and corrected if required. Thereafter, the broad class phonetic

boundaries are obtained from the fine class phonetic boundaries

and used for recognition.

FINE CLASS PHONEMES BROAD PHONEMES CLASS

AA,AE,AH,AO,AW,AY,

VOWELSEH,ER,EY,IH,IY,JH,L,

OW,OY,R,UH,UW,W,Y

B,CH,D,G,K,P,T STOPS

DH,F,HH,S,SH,TH,V,Z,ZH FRICATIVES

M,N,NG NASALS

Table 1: Mapping of the fine class to broad class phonemes

The recognition using the estimated articulators is also per-

formed using HTK. A three-state left-to-right HMM with state

emission PDF as GMMs with 256 mixtures is used for the recogni-

tion. Note that no language model is used in the recognition. We

also perform recognition using acoustic features i.e., MFCCs as

well as directly measured articulatory features. These are referred

to as MFCC and EMA respectively. Experiment using EMA is

done to understand the performance in recognition using estimated

articulators in relation to that obtained using the original articula-

tory kinematics.

Both inversion as well as recognition are done in a 10-fold

cross validation setup. In the SD setup, 8 folds are used for train-

ing the SDI scheme, 1 fold is used as the development set and the

remaining fold as the test set and this is repeated 10 times. This

is repeated separately for two subjects in the MOCHA-TIMIT

database. In the SI setup, the articulators for all the utterances of

a test subject are estimated using 8-folds and 2-folds of the other

subject as the training and development set. Once the articulatory

features are estimated for all folds, they are used for recognition,

where 9-folds are used for training the recognizer and the remain-

ing 1-fold is used as the test set in a round-robin fashion.

4.2. Results

In this work, we report the inversion performance in addition to

the recognition performance. The inversion performance is re-
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Figure 3: AAI performances (in terms of average (± one SD)

correlation coefficient) averaged over different articulatory fea-

tures for various inversion schemes: (a) Training and test being

the MOCHA female and male speakers, respectively, (b) Train-

ing and test data being the MOCHA male and female speakers,

respectively. For ISm1, the training subject is chosen identical to

the test subject.

ported in terms of the Pearson’s correlation coefficient [27] be-

tween the original articulatory trajectory and the estimated one.

Thus a higher correlation coefficient would indicate more similar-

ity between the original and the estimated articulatory trajectories

and hence better inversion performance. Fig 3 shows the inversion

performance for various schemes considered. Top three inversion

schemes in the increasing order of their inversion performance are

IS3H, IS3A and ISm1. Due to the matched training and test sub-

jects, ISm1 achieves the highest performance which is followed

by IS3A, the best among all the SII schemes. Acoustic normal-

ization using GAS as well as adaptation of HMM parameters is

the key to the high performance of IS3A. However, it should be

noted that the correlation coefficient obtained using IS3A is lower

(by 0.13 and 0.23 absolute) than that using ISm1 for the male and

the female test subjects respectively. Thus there is still scope for

improvement in the SII performance.

Table 2 shows the recognition accuracies averaged across all

folds using different acoustic and articulatory features for both

male and female speakers. It is clear that the acoustic features

result in a better recognition accuracy compared to that using ar-

ticulatory (original and estimated) features. Among the articula-

tory features, the four highest average recognition accuracies for

both male and female subjects are obtained using EMA, IS3A,

IS3H and ISm1. It should be noted that the statistical test (t-test)

reveals that there is no significant difference (p ≥0.05) between

the recognition accuracies obtained using EMA and IS3A for both

subjects. However, the recognition accuracy using IS3A is signif-

icantly (p <0.01) better than that using ISm1 in case of the male

subject, while that is not true for the female subject. The recog-

nition accuracy using IS3A is significantly (p <0.01) better than

that using IS3H for both subjects. Thus IS3A yields not only the

best inversion performance but also the best recognition perfor-

mance among different SII schemes. Moreover, the recognition

accuracy using IS3A is similar to that obtained by the original ar-

ticulatory features as well as the articulatory features estimated

from the SDI scheme. It is interesting to note that although ISm1

has a higher inversion performance compared to the best perform-

ing SII scheme, i.e., IS3A, there is no significant difference in their

recognition accuracies.

Detailed investigation of the confusion matrices of phonetic

recognition using different acoustic and articulatory features show

that the FRICATIVES recognition accuracy using IS3A is higher

than that using ISm1 and is comparable to that using EMA. This

is not the case for STOPS and VOWELS. In the case of NASALS,

the recognition accuracy using IS3A is higher than that using

EMA and ISm1 for the female subject, while they are similar for

the male subject. However, for each of the broad class phoneme,

Recognition accuracy (in percent) using

Subject MFCC EMA ISm1 IS0 IS1 IS3H IS3A

Female 86.08 74.24 72.24 65.76 67.14 69.83 73.17

(1.31) (3.01) (1.33) (1.86) (2.34) (1.61) (2.09)

Male 84.48 70.97 66.47 63.5 62.05 66.76 69.68

(1.38) (1.2) (1.58) (1.33) (2.66) (1.31) (1.62)

Table 2: Average recognition accuracy in the MOCHA-TIMIT

corpus (with standard deviation shown in braces).

the recognition accuracy using the acoustic features is higher than

that using articulatory features.

4.3. Discussion

In IS3H and IS3A, the best matching subset Bk̂ for a frame of a

given sentence is computed using the acoustic features of all the

remaining frames in the sentence leading to a better estimate of

the subset. In addition, Bk corresponds to finer phonetic segments

and the estimated articulatory feature in a frame is computed as a

weighted combination of the articulatory features from Bk̂ which

in turn could encode the phonetic information in the estimated ar-

ticulatory features resulting in the best SII performance. In the

SDI using GMM based mapping (ISm1), no such phonetic infor-

mation is directly embedded in the estimated articulatory features.

This could result in a better average recognition accuracy in the

case of IS3A compared to that of ISm1, although IS3A based es-

timates are worse compared to that of ISm1 based estimated ar-

ticulatory features when compared against the measured articula-

tory features (EMA). Similar recognition accuracies using IS3A

and EMA suggest that statistically both of them provide equal dis-

crimination among different phoneme classes although the esti-

mated and original articulatory trajectories are dissimilar. This

could also be a direct consequence of selecting the relevant artic-

ulatory features in each test frame based on finer phonetic class

identity. It should be noted that the recognition accuracy using

IS2A is found to be worse than that of IS3A indicating that finer

phonetic subsets in GAS is beneficial for both SII as well as recog-

nition performance compared to typical phonetic subsets. Thus,

finer the clusters in GAS, better is the recognition accuracy using

corresponding estimated articulatory features.

5. Conclusions

In this work, we have found that a better acoustic normalization

and adaptation in SII not only improve inversion performance but

also improve recognition accuracy when the articulatory features

from SII are used for recognition. We also find that the recognition

performance of the best SII scheme is similar to that using the SDI

scheme as well as the original articulatory features. However, the

inversion performance of SDI is better than that using the best SII

scheme. This indicates that a worse inversion performance may

not necessarily result in a worse performance in recognition us-

ing the articulatory features obtained from inversion. While it is

well-known that the original articulatory features provide comple-

mentary information to the acoustic features [3], investigation is

required to find out if the estimated articulatory features are also

complementary to the acoustics for recognition. This benefit due

to articulatory features could be more evident when a better mod-

eling technique such as the deep neural network (DNN) is used. It

would also be interesting to examine the variations in the recog-

nition benefits for different fine class phonemes by using a corpus

larger than the MOCHA database used in this work. These are

parts of our future work.
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