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ABSTRACT

We propose an approach to compute the inter-subband correlation
(ISBC) of noisy speech signals to distinguish between speech and
noise segments in the time-frequency plane. The proposed spec-
tral correlation estimator provides information about the input signal
which can be used to derive a binary mask or the speech-presence
probability. Unlike other approaches it does not require an estimate
of the noise power. To this end we analyse a received noisy speech
signal in the modulation domain and identify similarly modulated
subband signals within a range of modulation frequencies that are
typical for speech signals. Based on this pre-processing step, we
identify a single reference subband that most likely contains speech
and estimate the spectral correlations with respect to this reference
band. The algorithm proposed in this paper aims at a very low com-
putational complexity which makes it suitable for hearing aids.

Index Terms— modulation spectrum, spectral correlation, noise
reduction, binary mask, speech presence probability

1. INTRODUCTION

Single-channel noise-reduction (NR) algorithms are often imple-
mented in the short-time frequency domain and usually apply in-
stantaneous and real-valued weights to estimate the clean speech
DFT coefficients in each frequency subband. These gains generally
depend on the signal-to-noise ratio (SNR) observed in each subband
as, for instance, in case of the Wiener filter [1, 2], the spectral sub-
traction algorithm [3], or MMSE amplitude estimators [4, 5, 6]. The
transformation to the Fourier domain resolves short-term correla-
tions within the current signal frame. However, since the span of
correlation, especially of voiced speech sounds, is larger than the
frame length, we still observe significant correlation in each sub-
band and even more between different subbands. This inter-subband
correlation (ISBC) provides additional information about speech ac-
tivity especially when it is evaluated in the modulation domain. It
is known that synchronous temporal variations of the envelope of
audio signals extracted in different frequency bands represent im-
portant auditory cues [7, 8, 9] and have, as shown e.g., in [10], great
impact on speech intelligibility. When changing the temporal enve-
lope, the intelligibility of processed signals is affected, as analyzed
for instance, in [11, 12, 13]. Thus, in a noisy or reverberant speech
signal synchronous temporal modulations and features derived from
the amplitude modulation spectrum may be used to separate speech
from interference as successfully demonstrated, e.g., in the con-
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text of automatic speech recognition [14, 15] or speech segregation
[16, 17].

In this paper we investigate the ISBC by means of an efficient
computational algorithm for the detection of similarly modulated
subband signals and thus of speech presence. The correlation be-
tween subbands can be used, either to estimate the ideal binary mask
(IBM) or to derive a soft mask in the sense of a speech-presence
probability (SPP) estimator. Both types of masks can be applied
directly to the noisy signal, or they can be used as an additional
source of information for existing and novel speech enhancement
algorithms. Unlike existing SPP estimation methods, we do not re-
quire an estimate of the noise power spectral density or a local SNR.

The remainder of this paper is structured as follows. In Sec-
tion 2, we introduce the signal model and the IBM which is used as
a reference in the following investigations. Section 3 then describes
the estimation of ISBCs in the modulation domain. Beside the possi-
bility to derive a correlation-based binary mask, Section 4 describes
an ISBC-based SPP estimator. Finally, we provide evaluation results
and a discussion of results in Section 5 and Section 6, respectively.

2. SIGNAL MODEL AND IDEAL BINARY MASK

To derive the inter-subband correlation (ISBC) in the context of
single-channel speech signal processing, we assume an additive
noise model in the short-time Fourier domain (STFT), i.e., we have

Y (k,m) = X(k,m) + V (k,m), (1)

where Y (k,m) is the STFT of the noisy speech, X(k,m) is the
STFT of the clean speech component, and V (k,m) is the STFT of
the additive noise. The indices k and m indicate the frequency bin
and the time frame, respectively. An SNR-based IBM assumes the
clean speech signal power as well as the additive noise power to be
known. Then, we can define the IBM via a local criterion as

IBM(k,m) =

{
1 , if SNR(k,m) ≥ δIBM

0 , otherwise
, (2)

where SNR(k,m) represents the true (local) SNR as prior informa-
tion in each time-frequency (TF) bin and δIBM is a threshold. The
IBM is a widely used concept in single and multi-channel source
separation [18] and computational auditory scene analysis (CASA)
[19, 20, 21], especially since it is known to improve speech intel-
ligibility when applied directly to mixed signals. Significant effort
has been directed towards a batch or online estimation of the IBM to
achieve noise reduction or speech segregation, e.g. [22, 23, 24, 17].
Here we use the IBM as an ideal reference only.
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Fig. 1: Extraction of modulation components: In each subband,
envelopes M(k,m) are first low-pass filtered which results in
MLP(k,m). Then, a high-pass filter is applied to remove the mean
M̃(k,m) = MLP(k,m)− M̄(k,m).

3. EFFICIENT COMPUTATION OF INTER-SUBBAND
CORRELATIONS

The concept of the ISBC as proposed in this work is basically to de-
tect similarly modulated subband signals, based on the assumption
that the strongest modulation components originate from the target
signal. The ISBC computation process can be divided into the fol-
lowing steps [25]:

1. After the STFT, the noisy input signal is analyzed in the mod-
ulation domain. We focus on modulation frequencies that are
most representative of speech.

2. Identification of a reference subband which most likely con-
tains speech.

3. Computation of the cross-correlation of each subband and the
selected reference subband in the modulation domain with re-
spect to a predefined or adaptive memory length.

The remainder of this section provides a more detailed description
of these processing steps.

3.1. Preprocessing

We aim to identify similarly modulated subband signals in the noisy
input signal Y (k,m) with low complexity and low latency. There-
fore we extract the envelope via an incoherent approach using the
log-magnitude of the input signal,

M(k,m) = 10 log10 |Y (k,m)|2 . (3)

We note that more accurate incoherent and coherent envelope detec-
tors are available as proposed, e.g., in [26, 27, 16]. However, they in-
troduce additional delay, require the estimation of the instantaneous
frequency and are often sensitive to noise.

To extract envelope modulations that are typical for speech, i.e.,
within a modulation frequency range of 5 - 25 Hz, the log-envelope
M(k,m) is then filtered using a band-pass filter and the resulting
signal is denoted as M̃(k,m). We like to keep the computational
complexity as low as possible and therefore apply a band-pass filter
consisting of two simple first-order recursive systems with parame-
ters λLP and λ̄ as shown in Fig. 1.

3.2. ISBC Computation

Since the computation of the correlation between all subband com-
binations results in a high computational complexity, we propose
to define a single, but data-dependent reference subband, identified
by its frequency bin index kref(m). This reference subband index
should be chosen such that it contains the target signal with high

probability. In our experiments, the most effective selection scheme
relies on the filtered log-envelope

kref(m) = argkmaxM̃(k,m). (4)

With respect to this reference subband, the ISBC is defined as

ISBC(k,m) =
E
{
M̃(kref(m),m)M̃(k,m)

}
√

E

{∣∣∣M̃(kref(m),m)
∣∣∣2}E

{∣∣∣M̃(k,m)
∣∣∣2} ,

(5)

where in practice all statistical expectations E {•} are approximated
with recursive temporal averages of first order and smoothing param-
eter λcorr. This parameter determines the correlation memory. The
choice of the reference subband defined in (4) results in a high con-
trast between speech activity and speech pauses. During speech ac-
tivity it indicates the most dominant speech components, while dur-
ing speech pauses it shows a random characteristic. Especially this
latter effect is important for the overall performance of the method as
it triggers a quick decay of the correlation estimate at speech offsets.
Figure 2 shows a short segment of speech in traffic noise at 0 dB
seg. input SNR and the corresponding ISBC (Fig. 2 (f)). By thresh-
olding the ISBC a binary mask may be created. In Fig 2 (e) and
(g) we depict two versions of a binary mask: ISBCBM(0.1) is a mask
which sets all TF-bins to one for which we have ISBC ≥ δISBC with
δISBC = 0.1 and to zero otherwise. Correspondingly, ISBCBM(0.25)

in Fig 2 (g) uses a slightly larger correlation level of δISBC = 0.25.

4. ISBC-BASED SPEECH-PRESENCE PROBABILITY

While the ISBC can be used to derive a simple binary mask based
on a hard decision with a (possibly frequency-dependent) threshold
δISBC(k), it is more promising to derive an estimate of the speech-
presence probability given the noisy input signal and its ISBC. For
this purpose, we define the two hypotheses

Θ = {θ0 : “Speech and Noise”, θ1 : “Noise Only”} (6)

in terms of a binary random variable. The a-priori probabilities
P (Θ = θ0) and P (Θ = θ1) are estimated as the relative frequencies
of ones and zeros in the IBM (2). Based on this binary random vari-
able, we interpret the ISBC as a random variable z on the interval
[−1, 1], defined by conditional probability density functions (PDF)
pISBC|Θ(z|Θ = θ0) and pISBC|Θ(z|Θ = θ1). We estimate these
PDFs using histograms of the ISBC for many noisy speech signals
(8 different speech signals taken from the TSP database [28], 12 dif-
ferent noise signals taken from the SoundIdeas6000 database [29], 3
different input SNRs). We use the IBM (2) to distinguish between
“Speech and Noise” and “Noise Only”, and collect ISBC values for
both classes. The histograms shown in Fig. 3 are estimates of these
conditional PDFs.

We find that large correlation values are more likely to repre-
sent speech. Noise is represented by a more or less symmetrical
histogram with its maximum between z = −0.2 and z = 0. For
Θ = θ0 and ISBC values near z = 1 the histogram shows a decline
which is caused by insufficient coverage of very high correlation
values in the training data. This effect may be ignored in the PDF
model. Thus, based on the histograms shown in Fig. 3, we model the
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Fig. 2: Spectrograms for a short speech segment in traffic noise
mixed at 0 dB seg. input SNR. (a) clean speech signal, (b) noisy
speech signal, (c) IBM with 20 lg(δIBM) = −5 dB, (d) modulation
components and selected reference band (indicated as a white line),
(e) binary mask via thresholding the ISBC at δISBC = 0.1, (f) ISBC,
(g) binary mask via thresholding the ISBC at δISBC = 0.25, (h) SPP
PΘ|ISBC(Θ = θ0|z) for an SPP ratio RSPP = 6.1.

ISBC via a beta-distribution in the interval [a, b],

p(z|α, β, a, b) =

Γ(α+ β)

Γ(α)Γ(β)
(b− a)−(α+β−1)(z − a)α−1(b− z)β−1, (7)

where Γ(t) =
∫∞

0
xt−1e−xdx is the complete Gamma function.

Table 1 summarizes the parameter values we use in our experiments.

4.1. Estimation of Speech Presence Probability

Using the a-priori SPP P (Θ = θ0) = 1 − P (Θ = θ1) as well as
the conditional distributions pISBC|Θ(z|Θ = θ0) and pISBC|Θ(z|Θ =
θ1), we can now define the posterior probability of “Speech and
Noise” following Bayes rule

PΘ|ISBC(Θ = θ0|z) =

pISBC|Θ(z|Θ = θ0)P (Θ = θ0)

pISBC|Θ(z|Θ = θ0)P (Θ = θ0) + pISBC|Θ(z|Θ = θ1)P (Θ = θ1)
,

(8)
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Fig. 3: ISBC histograms (bars) for the classes “Speech and Noise”
and “Noise Only” and the respective fits using the Beta distribution
(solid lines) for 0 dB seg. input SNR.

which defines the speech-presence probability for a given ISBC
value z. This distribution basically describes a mapping of ISBC
values to a range of values between 0 and 1 with respect to the
conditional distributions and the a-priori SPP. Figure 4 shows this
mapping when using the fitted beta distributions, as well as the
histogram data for a fixed a-priori SPP of P (Θ = θ0) = 0.5. We
note that the mapping looks very similar for -10, 0, and 10 dB seg.
input SNR. For the particular parametrization given in Table 1, the
ISBC-based SPP may therefore be approximated by

PΘ|ISBC(Θ = θ0|z) =
1

1 + C (z+1)2.4(1−z)3
z+0.8

RSPP

, (9)

labeled in Fig. 4 as ’Beta Distribution Fit’. Here, C summarizes
constant terms of the beta distributions and evaluates to

C =
Γ(7.4)

Γ(3.4)Γ(4)

Γ(2)Γ(1)

Γ(3)

1.82

26.4
≈ 1.6530 . (10)

RSPP = P (Θ = θ1)/P (Θ = θ0) is the a-priori SPP ratio which
may be used to bias the SPP towards one of the two hypotheses.

5. EXPERIMENTAL RESULTS

To evaluate the proposed algorithm we process 180 seconds of
speech (6 female and 6 male speakers [28]) and 6 types of babble
and traffic noise [29]. All signals are sampled at a rate of 16 kHz and
transformed to the STFT domain via a 64-point FFT and a frame ad-
vance of 16 samples. We apply two version of binary masks (ISBC
thresholds of 0.1 and 0.25) and the soft speech presence probability,
all of which are derived from the ISBC data, to the time-frequency
representation of the noisy signals. After applying these masks we
use an IDFT and the overlap-add method to reconstruct an enhanced
time-domain signal. We evaluate the quality of the reconstructed
signal in terms of PESQ in comparison to the Ideal Binary Mask
(IBM) and furthermore compute the mean-square error (MSE) be-
tween the IBM and the hard and soft masks derived from the ISBC

parameter “Speech and Noise” “Noise Only”
minimum value a −0.8 −1
maximum value b 1 1
shape parameter α 2 3.4
shape parameter β 1 4

Table 1: Parameters of the Beta distribution used to model the ISBC
for classes “Speech and Noise” and “Noise Only”.
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Fig. 4: Posterior distribution which defines the SPP for a given ISBC
value for a fixed a-priori SPP of P (Θ = θ0) = 0.5. The gray lines
as well as the black dashed line indicate the posterior distributions
using the histogram data collected on a large database. The solid
black line represents the manual fit of the beta distribution.

Table 2: PESQ MOS-LQO scores averaged over 12 speaker and for
different noise types [29] at 0 dB SNR.

noise type noisy input IBM ISBC-SPP
white Gaussian 1.0793 1.8116 1.2968
light traffic, dry road 1.2007 1.5895 1.3483
medium traffic, dry road 1.2118 1.7912 1.4544
heavy traffic, dry road 1.1832 1.7479 1.3892
city traffic, horns, rumble 1.1615 1.7104 1.3892
bar/pub, medium crowd 1.2467 1.8788 1.2738
open kitchen, large crowd 1.1803 1.8366 1.2234
restaurant, small crowd 1.2007 1.7640 1.3210

Table 3: PESQ MOS-LQO scores averaged over 12 speaker and for
different noise types [29] at 10 dB SNR

noise type noisy input IBM ISBC-SPP
white Gaussian 1.4837 2.2942 1.9480
light city traffic 1.7818 2.1730 2.0988
medium city traffic 1.8905 2.4314 2.2986
heavy city traffic 1.7010 2.2559 2.1414
city traffic, rumble 1.7992 2.2789 2.2173
bar/pub, medium crowd 1.8720 2.4459 2.0693
open kitchen, large crowd 1.7391 2.3792 1.9413
restaurant, small crowd 1.8555 2.3547 2.1599

in the short-time frequency domain. The MSE is defined as

MSE =
1

KM

∑
k

∑
m

(IBM(k,m)− ISBC∗(k,m))2 (11)

where ISBC∗ is one of ISBCBM(0.1), ISBCBM(0.25), or ISBCSPP.
Table 2 depicts the PESQ scores for the IBM and the proposed

ISBC-SPP method for several noise types at an input SNR of 0 dB.
Although the proposed method is able to improve the PESQ scores
and thus the predicted quality of the signals it does not come close to
the performance of the IBM. For the SNR of 10 dB shown in Table 2
the ISBC method shows a substantial improvement. For noise types
with a broadband random spectrum, e.g. ’city medium’ and ’traffic
light’, the proposed ISBC-SPP approaches the performance of the
IBM. For noise types with clearly audible background voices less
improvements are achieved.

In Figure 5 we depict the mean square error of the estimated
masks with respect to the IBM. We find that the application of the

ISBC-BM (0.1) ISBC-BM (0.25) ISBC-SPP (0dB)

0.2

0.3

0.4

M
S
E

to
IB

M

Fig. 5: Mean-squared error between IBM and masks derived from
ISBC for 60s of noisy speech at 0 dB SNR. ISBC-BM (0.1): A hard
threshold at correlation level 0.1 was applied to the ISBC. ISBC-BM
(0.25): A hard threshold at correlation level 0.25 was applied to the
ISBC. ISBC-SPP (0 dB): SPP computed at a global SNR of 0 dB.

speech presence probability leads to a noticable reduction of the er-
ror. This effect is also observed in the auditory quality of the pro-
cessed signals: In an informal listening test, the soft-mask results in
a much better quality than the binary mask as spectral outliers and
fluctuations are less noticable.

6. DISCUSSION AND OUTLOOK

This paper introduces an efficient algorithm to analyze spectral
speech correlations in the modulation domain in order to gain in-
formation about the noisy speech signal for single-channel noise
reduction and speech detection purposes. Based on this correlation
analysis, we derive a speech-presence probability estimator which,
unlike established methods, does not require an estimate of the noise
power in each subband. The inter-subband correlation and the result-
ing binary and soft ISBC-SPP masks provide a noticable separation
between speech and noise in the short-time Fourier domain.

When we apply the estimated soft mask directly to noisy speech
signals we find a significant attenuation of the noise and hence also
an improvement of PESQ MOS-LQO scores as reported in Tables
2 and 3. However, especially in low SNR conditions there are also
processing artifacts which originate from estimation errors and from
a delayed reaction to speech onsets and speech offsets. These arti-
facts lead to a small reduction in the predicted intelligibility as for
instance computed with the STOI (Short-Time Objective Intelligi-
bility [30]) measure (not reported here). Thus, the brute-force ap-
plication of the derived masks do currently not provide the auditory
quality of a well-tuned conventional noise reduction filter, e.g. based
on an online noise power estimate and the Wiener filter, as discussed,
e.g. in [31, 1, 2, 32]. Nevertheless, it provides interesting insights
into the spectro-temporal composition of the signal. As it is entirely
different from conventional methods used in hearing aids and has a
lower computational complexity compared to methods using more
elaborate statistical or auditory models, we believe that it constitutes
a useful addition to the tools of the trade.

In future works we will consider improved methods for the se-
lection of the reference band as the temporal dynamics of the se-
lection process has a significant influence on the variations of the
estimated ISBC. Also, a major share of the processing latency of
the approach resides in the computational memory of the correlator.
The tradeoff between an efficient reference band selection, an effi-
cient computation of the correlation coefficients, and the variance of
the estimated masks will be subject to further investigations.

5388



7. REFERENCES

[1] P. Vary and R. Martin, Digital Speech Transmission: Enhance-
ment, Coding And Error Concealment, John Wiley & Sons,
2006.

[2] C. Breithaupt and R. Martin, “Noise reduction – Statistical
analysis and control of musical noise,” in Advances in Digital
Speech Transmission, Rainer Martin, Ulrich Heute, and Chris-
tiane Antweiler, Eds., pp. 107–133. John Wiley & Sons, 2008.

[3] S. Boll, “Suppression of acoustic noise in speech using spec-
tral subtraction,” IEEE Trans. Audio, Speech and Language
Process., vol. ASSP-27, no. 2, pp. 113–120, Apr. 1979.

[4] Y. Ephraim and D. Malah, “Speech enhancement using a
minimum-mean square error short-time spectral amplitude es-
timator,” IEEE Trans. Acoust. and Speech Signal Process., vol.
32, no. 6, pp. 1109–1121, 1984.

[5] Y. Ephraim and D. Malah, “Speech enhancement using a
minimum mean square error log-spectral amplitude estimator,”
IEEE Trans. Acoust. and Speech Signal Process., vol. ASSP-
33, no. 2, pp. 443–445, April 1985.

[6] C. Breithaupt, M. Krawczyk, and R. Martin, “Parameterized
MMSE Spectral Magnitude Estimation for the Enhancement
of Noisy Speech,” in IEEE Int. Conf. Acoustics, Speech, and
Signal Process. (ICASSP), 2008, pp. 4037–4040.

[7] A.S. Bregman, Auditory Scene Analysis: The Perceptual Or-
ganization of Sound, MIT Press, 1990.

[8] G.J. Brown and M. Cooke, “Temporal Synchronization in a
Neural Oscillator Model of Primitive Auditory Stream Seg-
regation,” in Computational Auditory Scene Analysis, D.F.
Rosenthal and H.G. Okuno, Eds., pp. 87 – 103. 1998.

[9] A.M. Liberman, Speech: A Special Code, A Bradford book.
MIT Press, 1996.

[10] R. Drullman, “Temporal envelope and fine structure cues for
speech intelligibility,” J. Acoust. Soc. Am., vol. 97, no. 1, pp.
585–592, Jan. 1995.

[11] R. Drullman, J.M. Festen, and R. Plomp, “Effect of temporal
envelope smearing on speech reception,” J. Acoust. Soc. Am.,
vol. 95, pp. 1053–1064, Feb. 1994.

[12] R. Drullman, J. M. Festen, and R. Plomp, “Effect of reducing
slow temporal modulations on speech reception,” J. Acoust.
Soc. Am., vol. 95, no. 5, pp. 2670–2680, May 1994.

[13] R.A. van Buuren, J.M. Festen, and T. Houtgast, “Compression
and expansion of the temporal envelope: Evaluation of speech
intelligibility and sound quality,” J. Acoust. Soc. Am., vol. 105,
no. 5, pp. 2903–2913, May 1999.

[14] H. Hermansky, N. Morgan, A. Bayya, and P. Kohn, “RASTA-
PLP Speech Analysis Technique,” in IEEE Int. Conf. Acous-
tics, Speech, and Signal Process. (ICASSP), 1992, vol. I, pp.
121–124.

[15] H. Hermansky and N. Morgan, “RASTA Processing of
Speech,” IEEE Trans. Speech and Audio Process., vol. 2, no.
4, pp. 578–589, Oct 1994.

[16] S.M. Schimmel, L.E. Atlas, and K. Nie, “Feasibility of Single
Channel Speaker Separation Based on Modulation Frequency
Analysis,,” in IEEE Int. Conf. Acoustics, Speech, and Signal
Process. (ICASSP), 2005, p. 221224.

[17] T. May and T. Dau, “Computational speech segregation based
on an auditory-inspired modulation analysis,” J. Acoust. Soc.
Am., vol. 136, no. 6, pp. 3350 – 3359, 2014.

[18] G. Kim, Y. Hu, and P. Loizou, “An algorithm that improves
speech intelligibility in noise for normal-hearing listeners,” J.
Acoust. Soc. Am., vol. 126, no. 3, pp. 1486–1494, Sep. 2009.

[19] G. Hu and D. Wang, “Speech segregation based on pitch track-
ing and amplitude modulation,” in IEEE Workshop Applica-
tions of Signal Process. to Audio and Acoustics (WASPAA),
New Paltz, NY, U.S.A., Oct. 2001, pp. 79–82.

[20] N. Roman, D. Wang, and G. J. Brown, “Speech segregation
based on sound localization,” J. Acoust. Soc. Am., vol. 114, no.
4, pp. 2236–2252, Oct. 2003.

[21] D. Wang and G.J. Brown, Computational Auditory Scene Anal-
ysis: Principles, Algorithms, and Applications, Wiley-IEEE
Press, 2006.

[22] Y. Li and D. Wang, “On the optimality of ideal binary time-
frequency masks,” Speech Communication, vol. 51, pp. 230–
239, 2009.

[23] N. Roman and J. Woodruff, “Intelligibility of reverberant noisy
speech with ideal binary masking,” J. Acoust. Soc. Am., vol.
130, no. 4, pp. 2153 – 61, 2011.

[24] E.W. Healy, S.E. Yoho, Y. Wang, and D. Wang, “An algorithm
to improve speech recognition in noise for hearing-impaired
listeners,” J. Acoust. Soc. Am., vol. 134, no. 4, pp. 3029 – 38,
2013.

[25] A. Schasse, Single-Channel Noise Reduction based on Long-
Term Speech Correlations with Application to Hearing Aids,
Ph.D. thesis, Institute of Communication Acoustics, Ruhr-
Universität Bochum, 2016.

[26] James F. Kaiser, “On a simple algorithm to calculate the ‘en-
ergy’ of a signal,” in IEEE Int. Conf. Acoustics, Speech, and
Signal Process. (ICASSP), Albuquerque, New Mexico, U.S.A.,
Apr. 1990, pp. 381–384 vol.1.

[27] L. Atlas and C. Janssen, “Coherent modulation spectral fil-
tering for single-channel music source separation,” in IEEE
Int. Conf. Acoustics, Speech, and Signal Process. (ICASSP),
Philadelphia, Pennsylvania, U.S.A., Mar. 2005, pp. iv/461 –
iv/464 Vol. 4.

[28] P. Kabal, “TSP speech database, version 1.0,” Tech. Rep.,
Telecommunications & Signal Processing Laboratory, McGill
University, Montreal, Canada, 2002.

[29] Sound Ideas, “Sound ideas 6000 database,” 2002, Electrical &
Computer Engineering, McGill University.

[30] Cees H. Taal, R. C.Richard C. Hendriks, Richard Heusdens,
and Jesper Jensen, “An algorithm for intelligibility prediction
of time-frequency weighted noisy speech,” IEEE Trans. Audio,
Speech and Language Process., vol. 19, no. 7, pp. 2125–2136,
Sep. 2011.

[31] R. Martin, “Noise power spectral density estimation based on
optimal smoothing and minimum statistics,” IEEE Trans. Au-
dio, Speech and Language Process., vol. 9, no. 5, pp. 504–512,
Jun. 2001.

[32] T. Gerkmann and R.C. Hendriks, “Unbiased MMSE-based
noise power estimation with low complexity and low tracking
delay,” IEEE Trans. Audio, Speech and Language Process.,
vol. 20, no. 4, pp. 1383–1393, May 2012.

5389


