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ABSTRACT

In this paper, we propose to improve the dual-microphone
voice activity detection (VAD) technique for which a dis-
criminative weight training is applied to achieve optimally
weighted spatial features. In our approach, we first de-
rive the maximum a posteriori (MAP) probabilities from
the spatial features such as the power level difference ratio
(PLDR), phase vector, and coherence. Then, we combine
each MAP probability within the minimum classification er-
ror (MCE) framework to offer an optimal VAD decision in a
spectral domain. Experimental results show that the proposed
dual-microphone VAD algorithm shows better performances
than the conventional dual-microphone VAD methods, which
solely utilize the PLDR, phase, and spectral coherence.

Index Terms— Voice activity detection, dual-microphone,
discriminative weight training, minimum classification error

1. INTRODUCTION

Voice activity detection (VAD) in a speech signal plays a cru-
cial role in speech coding, speech recognition, and speech en-
hancement. Traditionally, the statistical-model based VAD
employing the decision-directed (DD) method parameter es-
timation and reported high detection accuracy. The superior-
ity of the statistical model-based VAD has been recognized
in most studies in which the likelihood ratio (LR) test is de-
rived given a set of hypotheses, [1]. The statistical model-
based VAD was further improved by adopting the minimum
classification error (MCE) algorithm [2] in which optimally
weighted LRs are integrated into the VAD decision.

One of the predominant dual-microphone VAD tech-
niques employs the coherence technique [3], [4], which is
based on the assumption that the speech signals in two chan-
nels are correlated, which the noisy signals are relatively
uncorrelated. The technique studied by Arabi and et al. [5]
devised the VAD method to employ the time difference of

This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIP) (No.
20141A2A1A10049735). This research was also supported by LG Electron-
ics.

arrival (TDOA) of input signals at the two microphones. In
addition, the power level difference (PLD) was developed
in [7] at which the basic concept of the PLD relies on the
fact that speech signals have different power levels between
microphones, while the power levels of noise signals are al-
most equivalent. Then, Choi and Chang [8] presented a novel
algorithm to incorporate the PLD of noise during speech
pauses and then proposed the two-step PLD ratio (denoted
by PLDR), which is the ratio of the PLD of speech and noise
estimated during noise periods. Specifically, the long-term
power level difference ratio (LT-PLDR) and short-term power
level difference ratio (ST-PLDR) were computed to char-
acterize the long-term evolution and short-term variation,
respectively.

In this paper, we propose a novel dual-microphone VAD
technique using optimally weighted spatial features. In ad-
dition to the PLDR proposed in [8], we consider the more
spatial features such as the phase vector and coherence and
apply the MCE scheme in an attempt to represent the differ-
ent contributions of the spatial features for the VAD. Above
all, the maximum a posteriori (MAP) probabilities are first
derived from each feature based on the model-trust minimiz-
ing algorithm to classify the speech presence or absence re-
gions. Then, the optimal weights are achieved by the gen-
eralized probabilistic descent (GPD) technique and applied
to the each MAP probability to be optimally adjusted in the
VAD decision rule. The performance of the proposed algo-
rithm is evaluated by extensive objective tests under various
acoustic conditions. Based on a number of experiments, the
proposed VAD technique combining several models is supe-
rior and found to yield a better performance than solely utilize
the feature under various acoustical circumstances.

2. PROPOSED DUAL-MICROPHONE VOICE
ACTIVITY DETECTION USING THE MCE

ALGORITHM

It is assumed that input signals at the two microphones are
denoted yi(t) = xi(t) + ni(t), which is the sum of a clean
speech signal xi(t) and a noise signal ni(t). By taking the
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Fig. 1. Overall block diagram of the proposed two-microphone VAD approach

discrete Fourier transform (DFT) of the noisy signal yi(t),
then the equation in the time-frequency domain is obtained
by

Yi(k, n) = Xi(k, n) +Ni(k, n). i = 1, 2 (1)

Given two hypotheses, H0(k, l) and H1(k, l), which indicate
speech absence and presence, respectively. Then, it is as-
sumed that

H0(k, l) : Yi(k, n) = Ni(k, n)

H1(k, l) : Yi(k, n) = Xi(k, n) +Ni(k, n).
(2)

At first, the PLDR VAD technique was found to improve the
performance of the VAD which is ratio of the PLD ∆PY (k, n)

and the PLD of the noise ∆̂PN (k, n) in [2] as follows:

Q(k, n) =
∆̂PY (k, n)

∆̂PN (k, n)
(3)

where the PLD of the noise ∆̂PN (k, n) is obtained by us-
ing the minima controlled recursive averaging (MCRA) [9]
scheme. Note that the PLDR is composed of the LT-PLDR
and ST-PLDR, which are used to characterize the long-term
evolution and the short-term variation, respectively. However,
we believe that it is not enough for the dual-microphone VAD
since it does not consider additional spatial benefits such as
spatial correlation as well as the phase difference. For this
reason, we develop the combined VAD decision by using mul-
tiple spatial features such as the PLDR, phase vector, and
spectral coherence at which the optimal weights are assigned
to the multiple features by a help of the MCE method.

Specifically, based (2), the coherence function [3], [4]
which represent by a correlation of a signal is given as fol-
lows:

ΓY1Y2(k, n) =
PY1Y2(k, n)√

PY1(k, n)PY2(k, n)
(4)

where PY1 and PY2 are the PSD of two microphones, PY1Y2

denotes the cross power spectral density (CPSD), respec-
tively. On the other hand, the phase vector [6] which use the

phase difference between the two-microphone is given by

a(k, n) ,

[
q́1(k, n)

|q́1(k, n)|

]T

(5)

where q́1(k, n) is normalized by the first element of the prin-
cipal eigenvector [10] which has the largest eigenvalue. The
a posteriori probability of each feature is obtained by using
the sigmoid fitting approach [11] as follows:

p(H(n) = H1|φi(n)) =
1

1 + exp(aφi(n) + b)
(6)

where φi is the each feature and a and b are the slope param-
eter and bias parameter of each feature, respectively. Based
on this, the dual-microphone VAD is proposed using multiple
spatial features by defining the optimally weighted a posteri-
ori probability as given by

Λω(n) =

N∑
i=1

ωip(H(n) = H1|φi(n)) (7)

where {ωi} are weights for the MAP probabilities i.e.,
p(H(n) = H1|φi(n)) and N denotes the total number of
features. The weights {ωi} should satisfy the following con-
ditions.

M∑
i=1

ωi = 1, ωi > 0 for i = 1, 2, · · · , N. (8)

Note that Λω(n) represents the optimally weighted feature
vector in our approach. In time, two discriminant functions
of speech (gs) and noise (gn) classify to decide if each frame
is classified into speech or noise according to the following
conditions.

gs(Λω(n)) = Λω(n)− θ (9)
gn(Λω(n)) = θ − Λω(n) (10)
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where θ is the threshold value of the combined score. From
the combined score, we estimate the weight for which the
features are differently contributed in classifying speech or
noise. Subsequently, the weights are found by the discrimina-
tive weight training as follows:

D(Λω(n)) =

{
−gs(Λω(n)) + gn(Λω(n)), if gs is true

−gn(Λω(n)) + gs(Λω(n)), if gn is true
(11)

where D(Λω(n)) is the misclassification measure of train-
ing data {Λω(n)}. If the classification is correct, D(Λω(n))
is negative, which raises the error. Specifically, the GPD
technique approximates the empirical classification error by
a smooth objective function which is the zero to one step loss
function with a gradient γ of the sigmoid function as given by

L(t) =
1

1 + exp(−γD(Λω(n)))
, γ > 0 (12)

where the loss function yields a minimum value when the
weights are optimized. To consider the condition in (8), the
following parameter transformation is applied.

ω̃i = logωi. (13)

Then, the weights of each frequency bin, ω̃k is updated based
on the steepest descent algorithms as given by

ω̃i(n+ 1) = ω̃i(n)− ε∂L(t)

∂ω̃i
|ω̃i=ω̃i(n) (14)

where ε is a step size. Once ω̃i is updated, we adopt the in-
verse transform to ω̃i as follows:

ωi =
exp(ω̃i)∑M
j=1 exp(ω̃i)

. (15)

Finally, we perform the VAD decision based on the MAP
technique by using the MCE training as follows:

p(H(n) = H1|Φ(n))

p(H(n) = H0|Φ(n))
≷H1

H0
η (16)

where η is a given threshold.

3. EXPERIMENTS

3.1. Experiment setup

We evaluated our approach to estimate the proposed dual-
microphone VAD using the optimally weighted features with
objective measures under various conditions. The perfor-
mance of the proposed algorithm was compared with tradi-
tional VAD techniques consisting of the single feature such
as the LT-PLDR (L), ST-PLDR (S), phase vector (P), and
coherence function (C). The evaluation was conducted by
different four types of combination using the MCE scheme
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Fig. 2. ROC curves for various noise environments with ap-
prox. 6 dB SNR. (a) babble noise (b) office noise

that MCE (L + S + P), MCE (L + S + C), MCE (L + P + C),
and MCE (L + S + P + C)

For objective evaluation, the efficient metrics that speech
hit rate (Psh) and non-speech hit rate (Pnh) were employed
[8]. For the training and test phase, noisy sentences were
recorded at various distances of 1 m, 3 m, and 5 m and at az-
imuth angles of 0◦, 90◦, and 180◦ between the speech source
at the dummy head and the noise source. For simulating noisy
environments, speech data was artificially contaminated with
four different noisy sources such as babble, office, white, and
factory from the NOISEX-92 database [13]. The total sam-
ples were composed of 520 s long speech data which was
manually labeled the speech and non-speech segments of the
speech signal every 10 ms frame. The proportion of the hand-
marked active speech frame was 57.1 %, which consist of
44.5 % voiced sounds and 13.4 % unvoiced sounds.
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Table 1. Comparison of the conventional VAD methods and the proposed techniques with approx. 6 dB SNR
Source Noise Babble Office White Factory

Location Environments Psh Pnh Psh Pnh Psh Pnh Psh Pnh

PLDR [8] 93.44 89.95 93.41 89.23 95.29 90.44 91.81 89.41
Phase vector [6] 92.95 87.47 94.52 87.88 62.9 74.19 88.25 87.57
Coherence [3] 91.95 85.86 91.60 84.52 82.01 93.32 87.86 84.73

0◦ MCE (L + S + P) 95.97 89.39 96.25 90.04 94.71 90.12 94.10 89.45
MCE (L + S + C) 94.56 89.50 95.38 87.63 96.03 90.05 94.56 86.99
MCE (L + P + C) 96.88 87.68 95.88 89.62 93.40 90.07 94.31 88.37

MCE (L + S + P + C) 96.69 87.70 96.09 89.50 92.92 89.83 98.15 82.98
PLDR [8] 93.83 89.62 93.21 89.54 94.70 89.84 91.90 89.69

Phase vector [6] 95.60 88.66 94.96 89.91 84.47 86.76 85.30 88.68
Coherence [3] 90.85 85.65 89.82 85.31 80.75 91.75 87.71 81.83

90◦ MCE (L + S + P) 96.17 88.89 95.99 89.50 93.42 89.96 94.39 89.29
MCE (L + S + C) 95.66 88.76 94.93 88.44 95.43 89.75 94.03 88.39
MCE (L + P + C) 96.45 88.42 96.14 89.35 92.09 90.55 94.59 88.75

MCE (L + S + P + C) 96.33 88.38 96.33 89.09 91.86 89.97 94.59 88.38
PLDR [8] 89.04 87.04 89.44 86.39 78.17 90.53 86.48 85.60

Phase vector [6] 74.83 72.21 88.41 85.15 79.61 49.11 70.62 80.79
Coherence [3] 80.93 83.64 78.35 84.61 76.02 63.91 73.91 79.12

180◦ MCE (L + S + P) 90.00 87.23 93.59 86.89 83.29 85.78 89.42 86.76
MCE (L + S + C) 90.74 85.98 90.41 85.83 80.48 89.34 86.83 86.24
MCE (L + P + C) 88.49 87.57 93.12 87.47 80.83 88.07 87.10 88.97

MCE (L + S + P + C) 88.07 87.24 93.04 87.57 82.20 85.06 87.01 88.72

3.2. Experimental Results

We evaluated the performance of the proposed approach com-
pared with the traditional dual-microphone VAD techniques
[3], [6], and [8]. Then, for evaluating the detection accuracy
in terms of the speech and non-speech segment, noise source
was located at 0◦, 90◦, and 180◦. Then, the proposed method
was evaluated under the various conditions that four noise
types at different distances like an 1 m, 3 m, and 5 m. The re-
sults of this experiment is summarized in Table 1. According
to this table, it was found that the proposed dual-microphone
VAD technique using multiple features was superior to the
conventional dual-microphone VAD techniques for all tested
conditions. In particular, the MCE (L + S + P) showed the
best performance in terms of the probability of the detection
for speech, especially babble, office, and factory noises. Note
that the phase vector in the MCE (L + S + P) is relatively
attractive especially when the distance was short. As this ten-
dency was noticeably observed at the 90◦ and 180◦ azimuth.
In this result, the MCE (L + S + P) was outstanding against
traditional VAD techniques in all tested conditions. Espe-
cially, the results for office and destroyer engine noise envi-
ronments outperformed all other algorithms in four noise con-
ditions. Also, the receiver operating characteristics (ROCs),
showing the trade-off between speech detection probability
and false-alarm probability of babble, office, white, and fac-
tory noise environments are shown in Fig. 2. As a result,
the proposed vad technique using multiple features showed
the performance improvement compared to VAD techniques

using the solely feature from dual-microphone. It is obvi-
ous that the result for the detection probability using the op-
timally weighted features to multiple features is considerably
improved for babble and office noise environments.

4. CONCLUSION

In this paper, we proposed a dual-microphone VAD tech-
nique using optimally weighted spatial features including the
PLDR, coherence, and phase vector. The proposed VAD tech-
nique using the MCE framework adopt the optimal weights
for spatial features to the VAD algorithm by discriminative
weight training. First, the MAP probability of the tradi-
tional VADs is estimated by model-trust algorithm. Then, the
MCE training is adopted to obtain the optimal weights for
each spatial features. We apply the MCE scheme for all of
the combination spatial features to evaluate the performance
of VAD techniques. Our experimental results showed that
the proposed VAD technique using multiple spatial features
provides reliable VAD performances under various noise en-
vironments including non-stationary noise conditions that
babble and office noises.
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