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ABSTRACT

Handcrafted pronunciation lexicons are widely used in modern
speech recognition systems. Designing a pronunciation lexicon,
however, requires tremendous amount of expert knowledge and
effort, which is not practical when applying speech recognition
techniques to low resource languages. In this paper, we are in-
terested in developing speech recognition systems for logographic
languages with only a small expert pronunciation lexicon. An it-
erative framework is proposed to generate and refine the phonetic
transcripts of the training data, which will then be aligned to their
word-level transcripts for grapheme-to-phoneme (G2P) model train-
ing. The G2P model trained this way covers graphemes that appear
in the training transcripts (most of which are usually unseen in a
small expert lexicon for logographic languages), therefore is able
to generate pronunciations for all the words in the transcripts. The
proposed lexicon generation procedure is evaluated on Cantonese
speech recognition and keyword search tasks. Experiments show
that starting from an expert lexicon of only 1K words, we are able
to generate a lexicon that works reasonably well when compared
with an expert-crafted lexicon of 5K words.

Index Terms— Pronunciation lexicon, logographic language,
speech recognition, keyword search

1. INTRODUCTION

In the past few years there has been an increased interest in develop-
ing speech recognition and keyword search systems for low resource
languages. Building a speech recognition system for a new language
usually requires three major resources: first, transcribed speech data
for acoustic modeling; second, optional additional text data for lan-
guage modeling; and finally a lexicon that maps words to sub-word
modeling units, typically, phonemes. While it is relatively easy to
collect transcribed speech data and text data, the creation of the pro-
nunciation lexicon is often expensive as it requires large amount of
expert knowledge and effort. The pronunciation lexicon, therefore,
is the Achilles heel when building speech recognition systems for
low resource languages.

A lot of techniques have been proposed in the literature to
reduce the expert effort needed in lexicon design for automatic
speech recognition. One solution is to model graphemes instead
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of phonemes as the sub-word units, which completely removes the
necessity of a phonetic pronunciation lexicon in speech recognition.
Such techniques have found success in languages with alphabetic
(a.k.a. segmental) writing systems [1, 2], but cannot naturally be ex-
tended to other writing systems, e.g., logographic, as the graphemes
in those languages do not necessarily imply the phonetic represen-
tation of the words, and the number of graphemes is often quite
large, e.g., few thousands. Other researchers have been looking
into techniques that generate pronunciation lexicons in a data-driven
and stochastic manner. In [3, 4], a hierarchical Bayesian model is
proposed to jointly discover the phonetic inventory as well as the
grapheme-to-phoneme (G2P) mapping rules using only transcribed
speech data. The authors show encouraging results in their paper,
but the pronunciation lexicon discovery process itself is quite time
consuming with the proposed model, making it the bottleneck when
rapid development of speech recognition systems is desired. A more
practical technique is to start from a small expert pronunciation lex-
icon, enlarge it by learning the pronunciations of additional words
and incorporate them into the existing speech recognition system.
In [5, 6, 7, 8, 9, 10], the expert lexicon is used to train a G2P model,
with which pronunciations of additional words are generated, and
added to the existing lexicon. The enlarged lexicon can then be
refined in a data-driven manner.

We are interested in developing speech recognition systems
for logographic languages with only a small expert pronunciation
lexicon. We follow the general techniques in [5, 6, 7, 8, 9, 10],
where G2P conversion is used to generate pronunciations for out-
of-vocabulary (OOV) words. For logographic languages, due to the
large number of unique graphemes, G2P models trained on a small
seed lexicon, as proposed in [9], typically are not able to generate
pronunciations for all the words in the training transcripts. Previous
work on pronunciation modeling for logographic languages such
as Mandarin Chinese mostly only focus on pronunciation variants
[11, 12], and does not address the problem of unseen graphemes.
In this paper, we propose to incorporate the phonetic transcripts of
the training data into G2P modeling through an iterative framework,
so that all the graphemes that appear in the training transcripts will
be modeled. We start from the initial expert lexicon and build a
bootstrap speech recognition system, with which we generate pho-
netic transcripts for the training data. These phonetic transcripts
are aligned to their word-level transcripts using a many-to-many
alignment algorithm [13], which can then be used for G2P modeling
and lexicon update. This procedure is carried out iteratively, and is
able to generate pronunciations for words in the training transcripts.

The remainder of this paper is organized as follows. We describe
our pronunciation generation method in Section 2, and explain how
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we handle multiple pronunciations in our speech recognition system
in Section 3. We then illustrate our proposed iterative lexicon gener-
ation framework in Section 4. The experimental setup is detailed in
Section 5, and results are provided in Section 6. Finally we reiterate
our main claims in Section 7.

2. PRONUNCIATION GENERATION FOR LOGOGRAPHIC
LANGUAGES

Grapheme-to-phoneme (G2P) conversion is a task to map a word,
represented by a sequence of graphemes, to its pronunciation, repre-
sented by a sequence of phonemes [14]. Suppose w is the grapheme
sequence of a word, and p̂ its corresponding pronunciation, G2P can
be framed as follows [15]:

p̂ = argmax
p

P (p|w) = argmax
p

P (w, p) (1)

Therefore, one can either model the conditional distribution P (p|w)
or the joint distribution P (w, p). In this paper, we choose to model
the later.

The G2P formulation generally works for both alphabetic and
logographic languages. For logographic languages, since there are
usually large number of unique graphemes, special care should be
taken during model training. Below we explain how we generate
pronunciations for logographic languages when we build a speech
recognition system with a small expert lexicon.

2.1. G2P training data

G2P training data usually consists of a set of grapheme sequences
and their corresponding phoneme sequences. For G2P conversion
in speech recognition tasks, oftentimes the pronunciation lexicon is
used for G2P training.

In our task, since we are building speech recognition systems
for logographic languages and we only have a small expert lexicon,
training the G2P model using the lexicon will result in a large num-
ber of unseen graphemes in the training data, and the G2P model
trained this way will not be able to generate pronunciations for all
the words in the training data.

In order to cover as many graphemes as possible, we propose to
train the G2P model on the phonetic training transcripts, in addition
to the pronunciation lexicon. A speech recognition system can first
be trained with the small expert lexicon that we start with. Train-
ing data can then be decoded into phone sequences using this initial
speech recognizer. Now for each utterance in the training data, we
have a sequence of graphemes, and their corresponding phonemes.
We use those grapheme and phoneme sequences together with the
pronunciation lexicon to train the G2P model, which will be able to
generate pronunciations for all the words in the training transcripts.
The phone sequences generated by the initial recognizer will gen-
erally be noisy, but it can be refined through an iterative procedure,
which we will explain in details in Section 4.

2.2. G2P alignment

Grapheme and phoneme sequences provided in the G2P training
data have to be aligned into modeling units called “graphones” be-
fore building the pronunciation model. For logographic languages
such as Cantonese, one grapheme typically corresponds to multi-
ple phonemes, we adopt a many-to-many alignment algorithm pro-
posed in [13]. We use the open source toolkit Phonetisaurus [16] for
our alignment, which implements a weighted finite state transducer

(WFST) version of the many-to-many aligner. In our Cantonese ex-
periments, we allow at most 1 grapheme, and at most 4 phonemes
in a single graphone. A typical Cantonese graphone generated by
Phonetisaurus looks like “ 中 / dz1 u:1 N1”, where “ 中” is
a single grapheme (Chinese character), and “dz1 u:1 N1” is the
phoneme sequence aligned to it.

2.3. Joint n-gram model

After aligning graphemes and phonemes into graphones, a 4-gram
language model is trained for the graphone sequences using SRILM
[17]. The language model is further converted into a WFST G,
whose input labels are graphemes, output labels are phonemes, and
weights are the n-gram scores. The WFST G serves as the pronun-
ciation model.

2.4. Pronunciation generation

Given a grapheme sequence w of a certain word, generating pronun-
ciation p for the word is essentially finding the best path through G
that has input label sequence w, as described in Equation 2.

p = ShortestPath(Determinize(Project(w ◦G))) (2)

For our Cantonese experiments, we generate at most 5 different pro-
nunciations for a single word.

3. HANDLING MULTIPLE PRONUNCIATIONS

Since multiple pronunciations are generated for words that are not
already in the small expert lexicon, we explicitly model pronuncia-
tion and inter-word silence probability as that has been found use-
ful when pronunciation variants exist in the lexicon [18]. Unlikely
pronunciations are further pruned away based on the estimated pro-
nunciation probabilities. We incorporate the estimated pronuncia-
tion and inter-word silence probabilities into the lexicon transducer,
which will be used in both training and decoding.

3.1. Pronunciation probability estimation

We estimate the pronunciation probabilities for a word with multiple
pronunciations via simple relative frequency [19, 20, 21]. Let w.pi
be the ith pronunciation of word w, 1 ≤ i ≤ Nw, and Nw is the
number of different baseform pronunciations of word w in the lexi-
con. Let C(w,w.pi) be the count of “w w.pi” pairs in the aligned
training data. The probability of a pronunciationw.pi given the word
w is simply

π(w.pi|w) =
C(w,w.pi) + λ1∑Nw

i=1(C(w,w.pi) + λ1)
, (3)

where λ1 is a smoothing constant that we typically set to 1. An un-
desirable consequence of (3) is that a word with several equiprobable
pronunciations is unfairly handicapped w.r.t words that have a sin-
gle pronunciation. Max-normalization, whereby the pronunciation
probabilities are scaled so that the most likely pronunciation of each
word has “probability” 1, has been found helpful in speech recogni-
tion [22]. This suggests using

π′(w.pi|w) =
π(w.pi|w)

max1≤i≤Nw π(w.pi|w)
. (4)

We do max-normalization for pronunciation probabilities in all our
experiments. The quantity π′(w.pi|w) is of course not a well defined
probability any more.
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3.2. Silence probability estimation

This section explains how we model the probability of silence pre-
ceding or following certain pronunciation. For a given sequence
of words, we assume there is either a silence or non-silence event
between two consecutive words. Since such an event usually de-
pends on the neighbouring words, we further assume that it only de-
pends on the two surrounding words, i.e., we model the event using
P (s |w.pi, w′.pj) and P (n |w.pi, w′.pj), where w.pi and w′.pj
are the surrounding pronunciations, s and n represent silence and
non-silence event. For computation simplicity, we decompose this
into two parts: (i) probability of inter-word silence (or non-silence)
following the pronunciation, and (ii) probability of inter-word si-
lence (or non-silence) preceding the pronunciation.

We use P (sr|w.p) to denote the probability of inter-word si-
lence following the pronunciation w.p, and P (nr|w.p) for the com-
plementary probability of non-silence following w.p. We compute
P (sr|w.p) from training data counts as

P (sr|w.p) =
C(w.p s) + λ2P (s)

C(w.p) + λ2
, (5)

where C(w.p s) is the count of the sequence “w.p s” in the training
data alignment, C(w.p) is the count of pronunciation w.p, P (s) =
C(s)/(C(s)+C(n)) is the overall probability of inter-word silence,
and λ2 is a smoothing constant that we set to 2 for experiments.

Directly modeling the probability of inter-word silence (or non-
silence) preceding the pronunciation will cause double counting
problem. We therefore only compute it as correction term instead

F (sl|w′.p) =
C(s w′.p) + λ3

C̃(s w′.p) + λ3

, and (6)

F (nl|w′.p) =
C(n w′.p) + λ3

C̃(n w′.p) + λ3

, (7)

where C̃(s w′.p) and C̃(n w′.p) are the “mean” counts of silence
or non-silence preceding w′.p, estimated according to C̃(s w′.p) =∑

v C(v ∗ w′.p)P (sr|v), where the sum is over all pronunciations
v in the lexicon, the symbol “∗” in C(v ∗ w′.p) denotes either s or
n, and P (sr|v) is computed using Equation (5). λ3 is a smoothing
constant that we set to 2 for experiments reported here.

Putting it all together, we estimate the inter-word silence (or lack
thereof) given the neighbouring words as follows

P (s |w.pi, w′.pj) ≈ P (sr |w.pi)× F (sl |w′.pj), and
P (n |w.pi, w′.pj) ≈ P (nr |w.pi)× F (nl |w′.pj).

3.3. Pronunciation selection

Pruning of pronunciations is performed after estimating the pronun-
ciation and silence probabilities. For each word, we only keep the
pronunciations with probability higher than 0.6. Note that this is the
“max-normalized” probability, therefore each word may have multi-
ple pronunciations after pruning.

4. ITERATIVE FRAMEWORK

Our pronunciation generation procedure follows a general iterative
learning schedule. Unlike [9] and [7], where the iterative procedure
is more focused on selecting the best pronunciation given the pro-
nunciations generated by the G2P model, our framework attempts to
refine the phonetic transcripts generated by the speech recognizer,

Small Expert

Lexicon
G2P Extended

Lexicon

Early Stage
ASR Training

Handling
Multiple

Pronunciations

Later Stage
ASR Training

Converged?Phonetic
Transcription

No

bcb
Yes

Fig. 1. An iterative framework for lexicon generation and acoustic
modeling

which will be used to train the G2P model together with the small
expert lexicon, as described in Section 2.1.

Figure 1 illustrates our proposed iterative framework for lexi-
con generation and acoustic modeling. We start from a small expert
pronunciation lexicon of 500 or 1000 words. Pronunciations of the
words that are already in the small expert lexicon are kept untouched
throughout the whole process. The small expert lexicon is used to
train an initial G2P model, which is then applied to the words in the
training transcripts to create an extended lexicon. We generate at
most 5 pronunciations for each word in the training transcripts, if it
is not already in the expert lexicon. Note that the initial extended lex-
icon typically cannot cover all the words in the training transcripts,
due to the large number of unseen graphemes that are not covered
by the small expert lexicon. Those words are treated as OOV words
in the first iteration. For later iterations, since we add phonetic tran-
scripts for G2P training, the extended lexicon will be able to cover
all the words in the training transcripts.

Early stages of acoustic model training are carried out with this
extended lexicon, typically till the speaker adapted training stage.
Since the extended lexicon contains multiple pronunciations for each
word, we estimate the pronunciation and inter-word silence probabil-
ities as described in Section 3, which has found its success when pro-
nunciation variants exist in the lexicon [18]. We further prune away
pronunciations with low (less than 0.6) “max-normalized” probabil-
ities. The updated lexicon, as well as the pronunciation and inter-
word silence probabilities are incorporated into a new lexicon trans-
ducer for later stages of acoustic modeling as well as decoding.

After training the speech recognition system, if the word error
rate (WER) performance on some held-out dataset converges to a
stable point, we stop the process. Otherwise, we use the trained
system to decode the training data into phone sequences, which will
be sent back to re-train the G2P system, and start the process again,
till convergence. Note that in our experiments we set the language
model weight to 0 during the phonetic decoding process, but it may
also make sense to use a n-gram phone language model.

5. EXPERIMENTAL SETUP

5.1. Corpus

We evaluate the proposed framework using IARPA Babel language
Cantonese 1. The 10 hour subset of the full language pack is used
to conduct our experiments. The language pack also comes with
an expert lexicon that contains 5.9K lexical entries and 5K unique
words, which covers all the words in the training transcripts. The
number of unique characters covered by this lexicon is 2K. To sim-
ulate the situation where only a small expert lexicon is available for

1Language collection release IARPA-babel101b-v0.4c.
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speech recognition system development, we create two seed lexicons
by randomly selecting 500 and 1000 words from the original expert
lexicon. These two lexicons have 0.63K and 0.95K unique char-
acters respectively. For the keyword search task, the development
keyword list 2 is used for evaluation.

5.2. System description

We use the open source toolkit Kaldi [23] for all our system develop-
ment and experiments. Standard PLP analysis is employed to extract
13 dimensional acoustic feature, and a maximum likelihood acous-
tic training recipe is followed to train speaker adaptive models. This
is followed by the modeling of pronunciation and inter-word silence
probabilities, which updates the lexicon and prunes away unlikely
pronunciations. From this point, two different systems are trained: a
hybrid deep neural network (DNN) system and a subspace Gaussian
mixture model (SGMM) system with boosted maximum mutual in-
formation (BMMI) training. For the keyword search task, lattice in-
dexing is further performed to convert lattice of each utterance into a
finite-state acceptor with the posterior score, start-time and end-time
for each word encoded as a 3-dimensional weight. An inverted index
is then created from these individual acceptors, with paths to accept
every possible word sequence in the original lattices. This way, key-
word search can be done by composing the keyword acceptor with
the inverted index. For details of speech recognition and keyword
search systems, readers are referred to [24, 25, 26].

6. RESULTS

We report word error rate (WER) for the speech recognition task, and
actual term-weighted value (ATWV) for the keyword search task.
Numbers of both metrics are reported in percentage.

6.1. Performance

L1 (500 words) L2 (1000 words)
WER ATWV WER ATWV

baseline 75.6 2.79 68.1 9.08
Iteration0 72.9 6.76 65.7 13.81
Iteration1 61.6 13.95 58.9 17.87
Iteration2 61.8 15.19 58.4 18.59
Iteration3 60.9 15.38 57.8 18.91

oracle 54.2 23.77 54.2 23.77

Table 1. WER and ATWV performance of lexicons from different
iterations, SGMM BMMI system

L1 (500 words) L2 (1000 words)
WER ATWV WER ATWV

baseline 74.3 3.32 67.7 10.86
Iteration0 71.6 8.62 65.1 14.95
Iteration1 61.8 14.91 58.4 19.59
Iteration2 62.1 16.59 59.1 21.08
Iteration3 61.4 17.64 57.2 22.16

oracle 53.8 26.23 53.8 26.23

Table 2. WER and ATWV performance of lexicons from different
iterations, DNN system

Table 1 and 2 present the WER and ATWV performance of the
automatically generated lexicons from various iterations. We eval-

2Keyword list release babel101b-v0.4c conv-dev.

uate two seed lexicons, one with size 500 (L1), and the other with
size 1000 (L2), as described in Section 5.1. The “baseline” in the
two tables corresponds to the speech recognition system trained only
with the seed lexicon, and the “oracle” represents the system trained
with the full 5K words expert lexicon. Iteration0 corresponds to
the system trained with the initial extended lexicon, which does not
contain all the words from the training transcripts. Starting from
Iteration1, phonetic transcripts can be generated by the system, so
the G2P model trained on that can generate pronunciations for all
the words. The iterative procedure is carried out for three times, ex-
cluding Iteration0. Further iterations do not help in our experiments.

Let us start by looking at the ATWV numbers. It is clear from
the table that ATWV is increasing through the iterations. This im-
plies that the pronunciation lexicon is indeed improving through the
iterative framework. The WER improvements, however, are not as
steady as the ATWV improvements, although the best numbers are
all achieved at Iteration3. We suspect that this is partly because of
decoding noise, and partly because we discard the pronunciations
when we update the lexicon with the newly trained G2P model. It
might make sense to combine the old and new lexicons, and let the
speech recognizer pick the best pronunciation.

Note that there is a performance jump from Iteration0 to
Iteration1. This is because the initial extended lexicon trained
from the expert lexicon only covers a small portion of words in the
training transcripts, while the lexicon in Iteration1 covers all.

It is encouraging to see that, starting from a lexicon of 1000
words, which is just one-fifth of the original lexicon, we are able
to achieve a WER of 57.2 and ATWV of 22.16 with our proposed
iterative framework. This closes 76% of the WER gap and 74% of
the ATWV gap between the baseline and the oracle lexicon.

6.2. Impact of phonetic transcripts quality

SAT transcripts DNN transcripts
WER ATWV WER ATWV

baseline 67.7 10.86 67.7 10.86
Iteration0 65.1 14.95 65.1 14.95
Iteration1 60.2 18.83 58.4 19.59
Iteration2 59.4 20.46 59.1 21.08
Iteration3 59.2 20.66 57.2 22.16

oracle 53.8 26.23 53.8 26.23

Table 3. WER and ATWV performance on the DNN system, with
lexicons trained on the SAT transcripts or DNN transcripts (L2 seed
lexicon)

Phonetic transcripts of training data can either be generated by a
model from speaker adaptive training (SAT), or by DNN model. The
later typically yields better quality. Table 3 gives the performance
comparison of lexicons generated by the two models. The table sug-
gests that generating high quality phonetic transcripts is essential in
our framework.

7. CONCLUSION

We have presented an iterative framework that is capable of gener-
ating pronunciation lexicons for logographic languages. This allows
us to rapidly build speech recognition systems with limited expert
lexicon for those languages. Experiments on Cantonese suggest that
by using a seed lexicon of 1000 words, we are able to achieve rea-
sonably well speech recognition and keyword search performance,
when compared with an expert-crafted lexicon of 5000 words.
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