978-1-4799-9988-0/16/$31.00 ©2016 IEEE

CONVOLUTIONAL NEURAL NETWORK PRE-TRAINED WITH PROJECTION MATRICES
ON LINEAR DISCRIMINANT ANALYSIS

Takashi Fukuda, Osamu Ichikawa, and Ryuki Tachibana

IBM Watson Multimodal, IBM Japan Ltd.

19-21, Nihonbashi Hakozaki-cho, Chuo-ku, Tokyo 103-8510, JAPAN
E-mail:{fukudal, ichikaw, ryuki} @jp.ibm.com

ABSTRACT

Recently, the hybrid architecture of a neural network (NN) and a
hidden Markov model (HMM) has shown significant improvement
on automatic speech recognition (ASR) over the conventional Gaus-
sian mixture model (GMM)-based system. The convolutional neural
network (CNN), a successful NN-based system, can represent local
spectral variations spanning the time-frequency space. Meanwhile,
spectro-temporal features have been widely studied to make ASR
more robust. Typically, the spectro-temporal features are extracted
from acoustic spectral patterns using a 2D filtering process. Convo-
lutional layers in CNN that have various local windows can also be
regarded as an efficient feature extractor to capture 2D spectral vari-
ations. In a standard procedure, the local windows in CNN are ini-
tialized randomly before the pre-training and are iteratively updated
with a back propagation algorithm in the pre-training and fine-tuning
steps. In this paper, we explore using projection matrices composed
of eigenvectors estimated by linear discriminant analysis (LDA) ob-
jective function as initial weights for the first convolutional layer in
CNN. From analysis of the local windows trained by the proposed
method, we can see the eigenvectors of LDA has desirable properties
as initial weights of CNN. The proposed method yielded a 8.1% rel-
ative improvement compared to CNN with local weights initialized
randomly.

Index Terms— CNN, LDA, eigenvector, local window

1. INTRODUCTION

Deep neural networks (DNNs) have recently achieved tremendous
success for automatic speech recognition (ASR) tasks. They are
usually combined with hidden Markov model (HMM) and compute
the output probabilities instead of the conventional Gaussian mixture
model (GMM). A common CNN topology was proposed by LeCun
et al. [1, 2] and has been widely used in image recognition and
computer vision fields [3]. Sainath er al. applied CNN to large vo-
cabulary continuous speech recognition (LVCSR) and searched for
the appropriate architecture to make CNN more effective compared
to DNNs [4, 5]. CNN used for ASR is typically comprised of one
or more convolutional layers often with a subsampling step and then
followed by several fully connected layers as in a standard multilayer
neural network. It is known that CNN reduces spectral variations
caused by speaker characteristics, speaking styles, and acoustic en-
vironments compared to fully connected DNN alone, which has been
extensively used for acoustic models. The architecture of CNN is de-
signed to take advantage of the 2D structure of input features span-
ning time-frequency plane. This is achieved with local connections
(local windows) and tied weights followed by some form of pooling,
that generates translation-invariant features. In general, CNN works
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with far fewer parameters than DNN does. Since spectral representa-
tions of speech have strong correlations, modeling local correlations
with CNN has been shown to be beneficial [4].

Spectro-temporal features are also a well researched topic, es-
pecially for noise-robust ASR. Most of the techniques are based on
modulation spectra and Gabor filtering for time-frequency spectral
patterns [6, 7, 8, 9, 10]. They were created to represent certain stim-
uli to which the neurons of the mammalian auditory cortex are sensi-
tive. These stimuli consist of both spectral and temporal modulation
frequencies [11]. One area of research focus for spectro-temporal
features is how long-term temporal information is exploited for ASR
[12, 13, 14, 15]. Although this trend stems from recent findings on
the human auditory system, how to effectively integrate short-term
temporal variation with ASR is still an important research topic. In
addition to these techniques inspired by the auditory system, linear
discriminant analysis (LDA) and heteroscedastic discriminant anal-
ysis (HDA), both of which are based on machine learning theory, are
also used to represent temporal information of spectra [16]. LDA-
based sprectro-temporal representation has been shown to be benefi-
cial in the literature. In a typical example of using LDA for a feature
extraction, a supervector is made from several consecutive frames
and transformed into a new feature space that is more suitable for
ASR by multiplying the supervector by the projection matrix esti-
mated from the training data.

Although both CNN and spectro-temporal features play an im-
portant role in making ASR robust, in terms of feature extraction,
these techniques do not sufficiently generalize acoustic variations
spanning the time-frequency space. This paper proposes a method to
apply projection matrices estimated with the LDA objective function
as initial weights for a first convolutional layer of CNN to effectively
utilize the classification capability that LDA originally has. We ex-
pect the synergetic effect between CNN and LDA because CNN
is the algorithm directly focusing on errors of phone classification
while LDA is based on the distributions of phones. Conventionally,
the first n eigenvectors obtained by LDA that have large eigenvalues
are considered as filters that extract the important variational com-
ponents of spectra. We present through experiments that replacing
initial weights with eigenvectors from LDA helps construct better
local filters and improves the overall accuracy on ASR. This paper
also compares the local weights estimated by CNN and the eigenvec-
tors of LDA, and shows that the eigenvectors of LDA can effectively
function as initial weights of CNN.

2. PROPOSED METHOD

2.1. CNN

This section briefly summarizes a standard CNN architecture focus-
ing on the key points of comparison related to our proposed method.
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Fig. 1. CNN architecture.

Most of the notations in this section are based on the paper written
by Sainath et al [4].

A typical CNN architecture for ASR is shown in Figure 1.
Unlike DNN, each hidden activation h,, in convolutional layers
is computed by multiplying the small local input V' by weights
W = [wi,ws, - ,Wm, - ,wn], adding a bias b,,, and apply-
ing a nonlinear function in that layer, where w., is a connection
weight wyy, (4, 7) consisting of 2K + 1 bands by 2N + 1 frames
centered at the current band of the frame, v(n, k)

hm(n,k):f( >N wm(i,j)-v(n+i,k+j)+bm), )

i=—N j=—K

where k., (1, k) represents the neuron of the m'" feature map and f
is a nonlinear function, typically a sigmoid function. M is the num-
ber of connection weights. The weights W are then shared across
the entire input space, as indicated in the figure. Each local con-
nection (local window) is considered as a filter to extract important
spectro-temporal features from input features. After computing the
hidden units, each map is subsampled with mean or max pooling to
remove variability in the hidden units (i.e. convolutional band acti-
vations), that exist due to gender, speaking style, channel distortion,
etc. This paper uses the max pooling that receives activations from
r convolutional bands and outputs the maximum of the activations
from these bands. A fully connected network is then added after the
max-pooling layer to integrate the pooling features.

2.2. Linear Discriminant Analysis

LDA is a well-known feature extraction technique to make ASR
more robust. The basic idea of LDA is to find a projection of the
data where the variance between the classes is large compared to the
variance within the classes. This can be stated formally as finding a
projection matrix € that maximizes the objective function

 det(67%,0)

J(8) = ,
©) det(07%,,0)

2
where X, is the between-class covariance matrix and X, is the
shared within-class covariance matrix. The solution to this maxi-
mization problem is to take the first p eigenvectors of the matrix
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Convolutional layer

>3, for a p dimensional projection. As with CNN, the eigen-
vectors that compose the projection matrix are regarded as filters
that represent important variations on spectral patterns. In LDA,
there are several choices for the estimation process depending on the
class definitions. The typical choice is to use phonemes as classes
[17]. Using classes corresponding to HMM states (leaves) is another
choice that has been shown to improve the performance [18, 19]. In
this paper, we use the HMM state levels as the LDA class defini-
tions. Both CNN and LDA are based on supervised training, so the
resultant filters are dependent on the characteristics of training data
and objective function.

2.3. Connection Weights Initialized by LDA Eigenvectors

This paper proposes using LDA eigenvectors as initial local con-
nection weights in CNN. First, LDA eigenvectors are estimated
with training data by using the objective function described in
Section 2.2 and then initial weights for the first convolutional
layer in CNN are partially or fully replaced by the eigenvectors
of LDA. What we need here is to make supervectors for LDA
with the same size as the local windows in CNN, that is, 2K + 1
bands by 2N + 1 frames. D — 2K supervectors can be created
for the current frame, where D is the number of dimensions of
input feature. Note that the number of dimensions of the super-
vector is smaller than that of a supervector used in a standard
LDA-based feature projection [20] because the supervector in our
proposed method is created with the size of CNN local windows.
By solving the maximization problem on LDA, eigenvectors 8 =
(01,02, ,0p, -, 0K 11)x(2N+1)] are obtained. First p eigen-
vectors that have large eigenvalues are used to create initial shared
connection weights W = (601,02, - ,0,, Wpi1,Wpi2, -, W]
for the first convolutional layer. The connection weights in CNN
initialized with LDA eigenvectors are updated with the usual pre-
training and fine-tuning steps. Although weights after second con-
volutional layers could be initialized with a scheme similar to that of
the proposed method, this paper focuses only on the initialization of
the first convolutional layer. Since the proposed method is applied
to the initial values of local windows, there is no need to change the
architecture of CNN or the network training scheme.

2.4. Analysis of LDA Eigenvectors

This section discusses the characteristics of eigenvectors obtained
by LDA, which are used as initial weights in CNN. Figure 2 shows
the upper nine eigenvectors of 9x9 blocks (N = 4, K = 4) on
a log Mel-filterbank sequence extracted by LDA. Other distinctive
eigenvectors are also depicted in the figure. Speech data used here
is the training data set (‘Lecture Set’) described in Section 3.1. The
number of dimensions of log Mel-filterbank coefficients is 40. In
the figure, red and blue colors represent positive and negative val-
ues, respectively. Each eigenvector image was smoothed by linearly
interpolating an element of the eigenvector to make a comparison
visually easy.

From a filter-operational point of view, 61 is considered to be a
smoothing operator and as such is neutral characteristics among all
of eigenvectors. It is stated in the literature that €, has generally no
effect on feature extraction for ASR. Filters 62, 03, 84, and O¢ are
considered to correspond to from first-order to fourth-order deriva-
tive operators with respect only to the time axis. 05 is regarded as the
first-order derivative operator along the frequency axis only. These
filters from @2 to B¢ capture spectral variation individually along
the time or the frequency axis while filters 611, 614, and 05 repre-
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Fig. 2. Eigenvectors obtained by LDA.

sent 2D spectral variations spanning both time and frequency axes.
In contrast, filters 039, @35, and O39 are subspaces that represent
ridges and/or valleys (dynamic features) around formants on spec-
tral patterns. Considering the remaining eigenvectors obtained by
LDA, filters with large eigenvalues tend to capture comprehensive
spectro-temporal variations such as first- and second-order deriva-
tives. In contrast, eigenvectors with low eigenvalues represent rela-
tively detailed variations on speech such as higher-order derivatives.
Although LDA is a method based on the metric of class distribution,
many of the resultant filters have a regular pattern reflecting prin-
cipal components of speech. A comparison of the LDA and CNN
filters is given in Section 4.

3. EXPERIMENT

3.1. Speech Data

The experiments presented in this paper are all based on speaker-
independent models. We present the results on two in-house test sets
in Japanese. These data sets focus on spontaneous speech and rever-
beration. The sampling frequency of both data sets is 16 kHz. The
data sets are summarized as follows.

Lecture Data Set:
This data set is made up of lectures recorded at a university and con-
sists of 83 hours of utterances by 147 speakers for training. The
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recorded speech data was manually transcribed. Test data is com-
posed of the lectures of three speakers and consists of 1.6 hours in
total and approximately 3K unique words. Subjects of the lectures,
for example, pertain to politics and psychology, ranging from 7.5
minutes to 45 minutes per lecture. A microphone (pin mic) was at-
tached close to lecturer’s chest, so there is little ambient noise and
reverberation. The speaking style is spontaneous.

Farfield Data Set:

This data set was recorded in a quiet meeting room (not an anechoic
chamber) with microphone distances of 50 and 100 cm. The data set
includes little ambient noise but does reverberation. Training data
consists of 55 hours of speech including a ‘command and control’
utterance, an address, a personal name, a phone number, and a short
messaging task, all of which are a read-speech style. Test data is
comprised of 2,000 sentences of the same contents for each micro-
phone distance and is uttered by 5 male and 5 female speakers.

3.2. CNN Architecture

The frontend acoustic features are 40-dimensional log Mel-filterbank
coefficients computed from 25-ms frames with a 10-frame shift and
are fed to CNN. The sampling frequency was 16 kHz. Speaker-level
mean and variance normalization for the static features, where the
statistics were calculated only on the speech regions of the data,
were used throughout the CNN training step. CNN is combined
with HMM to form a hybrid CNN/HMM system.

The first convolutional layer has 128 hidden units, the second
has 256 hidden units, and the following five fully connected layers
have 1024 hidden units each. In our experiments, the first p initial
local weights in 128 windows of the first convolutional layer were
replaced with LDA-based eigenvectors. LDA was performed with
the same training data set as CNN. For the baseline CNN, all of
128 local windows were initialized randomly. Only the initialization
step for local windows before pre-training is different between the
baseline and the proposed method. The size of the local windows
is 9x9 for the first convolutional layer and 3 x4 for the second con-
volutional layer. We used max-pooling in frequency only (not time)
for the pooling layer. This was shown to be optimal for ASR [21].
The pooling size in these experiments is 3 for both first and second
pooling layers. Sigmoid function is used as the nonlinear activation
function for hidden units. The softmax layer has 5000 output tar-
gets corresponding to the context-dependent phonemes obtained by
growing a phonetic decision tree with a quinphone cross-word con-
text.

The training data of the CNN was fully randomized at the frame
level and the network was trained using stochastic gradient descent
on minibatches of 250 frames with a cross-entropy criterion. Prior
to the cross-entropy training of the full network, layer-wise discrim-
inative pre-training was used for the fully connected layers (DNN
layers) by running one cross-entropy sweep over the training data
for the intermediate networks that had been obtained by adding one
hidden layer at a time. The cross-entropy training converged after 15
iterations.

3.3. Results

The experimental results for each test set are provided in Tables 1
and 2. In the tables, we changed the number of weights p initial-
ized with LDA eigenvectors. Notations of ‘mp001’, ‘mp005’, and
‘mp006’ in Table 1 indicate speaker ID in the test set. Tables 1 and 2
also include the results when 40-dimensional LDA features were in-
put to CNN (Baseline CNN-LDA). The LDA features were extracted



Table 1. Results with lecture data set.

CNN [ %CER (Character Error Rate) |
| mp00T ] mp005 | mp006 [ AVERAGE |
Baseline CNN-logMel 14.1 21.7 12.3 16.0
Baseline CNN-LDA 154 23.8 13.0 17.4
Proposed CNN-logMel (p=32) 13.6 21.2 12.1 15.6
Proposed CNN-logMel (p=64) 133 20.6 10.2 14.7
Proposed CNN-logMel (p=81) 13.1 20.6 12.0 15.2
Table 2. Results with farfield data set.
CNN %CER (Character Error Rate)
50cm 100cm AVERAGE

Baseline CNN-logMel 16.3 18.4 17.4

Baseline CNN-LDA 17.4 20.5 19.0

Proposed CNN-logMel (p=32) 15.5 17.6 16.6

Proposed CNN-logMel (p=64) 15.1 16.9 16.0

Proposed CNN-logMel (p=81) 15.4 17.3 16.4

by projecting 117-dimensional PLP features composed of consecu-
tive 9-frame PLP with 13-dimensions down to 40 dimensions. Note
that the LDA features for Baseline CNN-LDA were not used as ini-
tial values of local windows but were only used as the input features
to the CNN.

From Table 1 for the lecture set, we can see that our proposed
method outperformed the baseline CNN for all of the speakers. In
our experiments, accuracy was best when 64 eigenvectors of LDA
were used as initial weights for CNN, and the relative improvement
against the baseline was 8.1% on average. Next, we consider the
farfield test set shown in Table 2. We can see a similar trend as the
lecture set, with the proposed method performing significantly better
than the baseline. For this test set, our proposed method achieved
8.0% error reduction when the number of eigenvectors p was again
set to 64.

4. DISCUSSION

We compare the convolutional filters obtained by LDA alone, CNN
alone, and CNN initialized with LDA eigenvectors. Figure 3 picks
up three characteristic filters 83, 015, and 030 from Figure 2. The
filters we discuss here were all obtained with the training data of
the lecture set discussed in Section 3. We first examine filters by
LDA and CNN alone. The middle part of the figure shows three
filters of the first convolutional layer of the baseline CNN for the
ASR experiments in Section 3, obtained after pre-training and fine-
tuning. Unlike the eigenvalues in LDA, there is no metric to measure
the importance of local windows in CNN. Thus, we show the filters
that are most similar to LDA filters shown above, in cosine similarity
distance between each LDA-based filter of 03, 015, 03¢ and all filters
in CNN. As shown in the figure, the shape of the filters estimated by
CNN roughly resembles that from LDA, but what the filters capture
is quite different. For example, 63 in LDA is regarded as the second-
order time derivative filter, but the most similar one from CNN is not
obviously a simple time derivative filter but a more complicated one.

Next we address the filters obtained by our proposed method
(bottom images in Figure 3). We can see the shapes of the filters
initialized by LDA and then optimized by CNN training are trans-
formed from the original shapes optimized by LDA. This suggests
that the local filters estimated by our proposed method better fit the
training data compared to LDA alone and also have the classification
capability that LDA originally has. In addition, as already shown in
the previous section, we see the best ASR accuracy when the num-
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Fig. 3. Comparisons of local filters obtained by LDA, CNN, and
CNN initialized with LDA eigenvectors.

ber of eigenvectors p was set to 64. This means that the half size
of the first convolutional layer is derived from LDA and the other
half is purely calculated by iterations of CNN training starting from
random values. In other words, the resultant convolutional layer is
considered to have two kinds of features, and hence the hybrid us-
age of filters from LDA and CNN provides complementariness at
the feature level similarly to complementariness obtained by feature
combination techniques.

5. CONCLUSION

This paper proposed initializing a part of local connection weights in
the first convolutional layer of CNN by using eigenvectors estimated
from the LDA objective function. Eigenvectors are obtained from
supervectors created by the same size as local windows in CNN.
Because LDA is designed to have discriminative characteristics, re-
placing about half of initial weights by the eigenvalues of LDA can
provide an additional discriminative capability to CNN. The pro-
posed initialization technique showed gains of up to 8.1% relative
for the lecture-style data set, and 8.0% relative for the farfield data
set over the standard CNN initialized with random values. We also
compared filters obtained by LDA and CNN, and found that the fil-
ters obtained from CNN initialized by LDA eigenvectors have an
intermediate property between LDA and CNN, and provide comple-
mentariness in the form of spectro-temporal feature extraction. In
the future, we will investigate factorial connection weight initializa-
tion by partitioning training data.
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