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ABSTRACT

Recent work on zero resource word discovery makes inten-
sive use of audio fragment clustering to find repeating speech
patterns. In the absence of acoustic models, the clustering
step traditionally relies on dynamic time warping (DTW) to
compare two samples and thus suffers from the known limi-
tations of this technique. We propose a new sample compar-
ison method, called similarity by iterative classification, that
exploits the modeling capacities of hidden Markov models
(HMM) with no supervision. The core idea relies on the use
of HMMs trained on randomly labeled data and exploits the
fact that similar samples are more likely to be classified to-
gether by a large number of random classifiers than dissimilar
ones. The resulting similarity measure is compared to DTW
on two tasks, namely nearest neighbor retrieval and cluster-
ing, showing that the generalization capabilities of probabilis-
tic machine learning significantly benefit to audio word com-
parison and overcome many of the limitations of DTW-based
comparison.

Index Terms— zero-resource speech processing, word
discovery, audio words clustering, unsupervised learning,
acoustic similarity, dynamic time warping

1. INTRODUCTION

Clustering word-like acoustic fragments has proven useful in
a number of situations were no annotated resources are avail-
able to build models, the so-called ’zero resource’ setting. In
particular, unsupervised word discovery from acoustic data
with zero resources has recently appeared as a new challenge
in speech processing. Seminal work on the topic [1] has trig-
gered various approaches, e.g., [2, 3, 4], and led to the re-
cent zero resource speech challenge [5]. This challenge tar-
gets the unsupervised discovery of linguistic units from raw
speech in an unknown language, with linguistic units being
either word-like units or phone-like units. A key ingredient
to unsupervised word discovery is clustering of acoustic pat-
terns that are likely to be words. In fact, all approaches in the
literature detect potential repeating word-like fragments that
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are further grouped together to identify meaningful patterns.
The clustering step might be explicit [1, 4], or implicit [2].

Clustering word-like acoustic fragments requires a mea-
sure of the similarity between two fragments x and y, regard-
less of the clustering algorithm used. The natural choice with
speech signals is obviously the dynamic time warping (DTW)
algorithm to account for possible temporal variations. This is
for instance the choice made in [1, 2, 3, 4]. But DTW has a
number of drawbacks that severely limit its effectiveness. In
particular, DTW is very sensitive to spectral variations, as typ-
ically found across speakers. The use of posteriorgram repre-
sentations improves the speaker-dependency of DTW [6], yet
pattern comparison remains sensitive to many variations in-
cluding start and end point detection, spectral variability and
significant speech rate variations. On the contrary, probabilis-
tic models, such as hidden Markov models (HMM) and its
variants, have proven significantly more robust to these vari-
ations but require training data.

In this paper, we propose to implicitly define a similar-
ity between acoustic fragments suited for clustering that takes
full advantage of the modeling and generalization capabili-
ties of HMMs, without the need for pre-trained models. The
technique is thus perfectly fit for zero resource tasks. The key
idea behind this approach is that any supervised classifier nat-
urally produces a partition of the dataspace thus providing a
rough notion of similarity. In particular, in recent years, sev-
eral studies have investigated the use of classifiers trained on
randomly generated annotations of the data to uncover sim-
ilarities between samples [7, 8, 9, 10]. In locality sensitive
hashing schemes, samples often falling on the same sides of
random hyperplanes are grouped together. Similarly, samples
grouped in the same class by a set of randomly trained clas-
sifiers are deemed very similar. The advantage over LSH lies
in the generalization capability of classifiers, which leads to
much more complex space partitions than hyperplanes. We
apply here this principle, named similarity by iterative classi-
fication (SIC), to audio similarity, using HMMs as classifiers
to group word-like audio fragments.
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2. AUDIO SIMILARITY BY ITERATIVE
CLASSIFICATION

The key idea for computing the audio similarity between two
signals by iterative classification is that, if we consider a set
of independent classifiers, the more often two samples are as-
signed the same label by one of the classifiers, the more likely
it is that the two samples are similar. The principle of SIC is
thus to generate a significant number of independent classi-
fiers and to count how often two samples are classified to-
gether among the set of independent classifiers.

In fact, the reason why a classifier labels two samples sim-
ilarly is first and foremost because the two samples exhibit
structural similarity as modeled by the classifier. Obviously,
the type of classifier used must be adapted to the task and able
to capture the structural properties of the data. The very prin-
ciple of SIC was first introduced in [7] and [8] with a similar-
ity based on respectively decision trees and random forests to
distinguish synthetic samples from true data. A first extension
to time-structured data clustering using conditional random
fields was proposed in [9]. This last approach is here adapted
to speech signals clustering relying on hidden Markov mod-
els, a natural choice for the classification of speech signals,
where Markov models are trained directly on the data to be
clustered without the need for human-labeled data.

2.1. The SIC algorithm

Let X = {x1 . . . xD} be a database of D audio samples. We
aim at defining a similarity function s : X ×X → R between
pairs of samples taken from X . Following the SIC principle,
we need to train a set of independent HMM classifiers on the
samples, each classifier providing a different partition of the
data space. This is achieved by randomly choosing a subset
of the data as training set, on which labels are randomly gen-
erated. HMM classifiers are then learned from this synthetic
(random) training set and applied on the remainder of the data
to generate labels that will further serve as the basis for defin-
ing a similarity between any two pair of samples.

Formally, the following process is iteratedN times to gen-
erate a number of independent HMM classifiers so as to pre-
vent bias towards specific training parameters.

At iteration i, a training set and a test set, Tri and Tei,
are extracted from the database such that Tri ∩ Tei = ∅ and
Tri ∪ Tei ⊂ X . A synthetic label is randomly generated for
each training sample in Tri. We denote αr (resp. αe) the pro-
portion of training (resp. test) samples, and L the number of
unique labels which are randomly assigned to the samples in
Tr. Note that prior knowledge could be included during the
labeling step in order to refine the process, e.g., if two samples
are already known to be very similar, they should be assigned
the same synthetic label. In our experiments, such knowl-
edge is however not available, and we only resort to a basic
randomized assignation. Based on the randomly generated la-

Data: X , αr, Lmin, Lmax
Result: s : X × X → R
for i=1 to N do

Tri ← αr|X | random samples from X ;
Tei ← αe|X | random samples from X \ Tri;
Li ← rand(Lmin, Lmax);
foreach xj ∈ Tri do

Assign label lj , where j = rand(1, Li);
ci ← Learn(Tri, (lj)j); // Training
for {xp, xq} ∈ Tei × Tei do

s(xp, xq) += 1ci(xp)=ci(xq);
occ(xp, xq) += 1;

s← s/occ; // Normalization

Algorithm 1: Pseudo-code for SIC

bels, a classifier ci is trained on Tri and used to classify each
sample in Tei. The classification result defines a similarity
score si : Tei × Tei → R, reflecting the assumption that two
samples obtaining the same label share some structural simi-
larity uncovered by the classifier. Formally, we define si(x, y)
as

si(x, y) = 1ci(x)=ci(y) =

{
1 if ci(x) = ci(y)

0 if ci(x) 6= ci(y)
. (1)

After the last iteration, the similarity between two data
points xp and xq from X is obtained as the average number
of times the two samples have been classified together over
the N iterations, i.e.,

sN (xp, xq) =

N∑
i=1

si(xp, xq) 1{xp,xq ∈ Tei}

N∑
i=1

1{xp,xq ∈ Tei}

(2)

where
∑N

i=1 1{xp,xq ∈ Tei} is the number of times xp and xq
were both in the same test set.

The pseudo-code of the algorithm is given in Algorithm 1.
Note that other score functions than (1) could be considered,
e.g., using reward/penalty scores instead of a binary decision.
We experimented several such variants [11]. However, while
they change the overall distribution of the similarities, none
of the variants impact the clustering results significantly.

2.2. About randomization

The randomization of the learning parameters at each itera-
tion is an essential part of the algorithm to avoid bias towards
specific characteristics of the data in the final similarity. Re-
garding the training and test sets, we keep their proportions
constant throughout the iterations and only vary their compo-
sition. The value of αr is determined according to the size
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of the dataset and to the maximum number of synthetic labels
we consider, so as to ensure enough samples in each training
class on average. As for the test samples, we simply use the
remaining samples, i.e., αe = 1−αr and hence Te = X \Tr.

The number of synthetic labels at iteration i, Li, is cho-
sen at random within an interval [Lmin, Lmax]. In practice, the
value of Li is positively correlated with the granularity and
discriminative power of the similarity, as raising the number
of labels increases the classification grain. Clearly, having a
large number of labels will make it unlikely that two samples
be classified together unless they are highly similar. As a con-
sequence, the similarity will be significantly greater than zero
only for samples that are indeed very close one from another.
All other distances will tend towards zero.

Randomization should also be considered in the classifier
setting. We use hidden Markov models for which we vary the
topology at each iteration, alternating between two types of
chains. HMM type 1 designates a linear Markov chain with
loop transitions on each emitting state and direct forward tran-
sitions while HMM type 2 additionally features skip transi-
tions. In addition to changing the topology, the number of
states and the acoustic features are also chosen randomly. See
Sec. 3.1 for details on the impact of these parameters.

3. EXPERIMENTS

Similarity by iterative classification is evaluated within two
tasks, namely nearest neighbor retrieval and clustering ap-
plied to audio words.

3.1. Experimental Setting

Word-like audio samples were extracted from a subset of the
ESTER2 dataset [12], which contains audio streams extracted
from various French radio news shows. We considered all
words that can be extracted from the reference transcript, fil-
tering out potential outliers. We excluded samples with a
length inferior to 0.2 seconds, as well as all words with less
than 10 occurrences. As clustering is purely acoustic, possible
homophones were merged in a single category. The resulting
database contains 13,477 audio samples for 543 unique clus-
ters. The main difficulty of the task lies in the high variability
of speaker and recording conditions (radio studio, outdoors,
phone conversation. . . ) among the samples of a given class.
The fact that words were taken from broadcast news speech
and extracted from their context also adds to the difficulty be-
cause of context removal and coarticulation.

We use Mel frequency cepstral coefficients as a classical
representation of speech signals. For DTW, we use MFCC
with first and second order derivatives and perform cepstral
mean removal. On the contrary, following the same random-
ization process as earlier, we vary the type of coefficients
extracted for the MFCC features at each iteration of SIC.
Note that using variance normalization or more robust fea-

tures would certainly slightly improve the results, however
both for SIC and for the baseline. We thus chose to experi-
ment with difficult features to show the robustness of SIC in
adverse conditions. We also set the main parameters values
as αr = 0.4, Lmin = 100 and Lmax = 200, which on average
ensures roughly 40 samples in each synthetic class. While
a higher number of synthetic labels could better capture the
high granularity of the ground-truth clustering (543 classes),
it would lead to higher computation times and memory usage.

SIC is compared to a standard DTW similarity in terms
of nearest neighbor retrieval, where the neighbors of a sam-
ple are the members of its ground-truth class, and in terms of
clustering, relying on Markov clustering [13]. Markov clus-
tering operates on a graph connecting all points with edges
weighted by the similarity between the samples, obtained ei-
ther with SIC or with DTW. The interest of the nearest neigh-
bor retrieval evaluation is that it avoids the dependency to a
particular clustering algorithm and parameter setting. These
results should thus be considered as a more objective assess-
ment of the similarity performance than the one obtained via
clustering. Yet, the clustering results shows the benefits in a
more realistic task.

For all experiments, we report the mean average preci-
sion (mAP), average f-score at rank 1 and 100 for the nearest
neighbor retrieval task. The mAP evaluates the precision (rel-
atively to the ranks of the ground-truth neighbors in the list
of neighbors ranked according to the similarity measure con-
sidered), while the f-measure captures both recall and preci-
sion. For the clustering task, we report standard evaluation
measures comparing the resulting clusters with ground-truth
classes, that is: adjusted rand index, V-measure, normalized
mutual information and adjusted purity. The adjusted purity
characterizes how pure the clusters are based on the number
of different classes appearing in a cluster. The adjusted Rand
index uses pairs counting and takes into account both cor-
rectly and incorrectly classified pairs of samples. Finally, the
V-measure and normalized mutual information are both based
on entropy and information theory notions, rather than pairs
counting. A complete presentation and discussion of these
scores can be found in [14].

3.2. Results

We first present in Tab. 1 a comparison of various SIC runs
(2,000 iterations each) with different HMM topologies. La-
bel ”type 1/2” denotes runs where one of the two topologies
is chosen at random at each iteration. We also indicate the
total number of states in the HMM, which is usually constant
when type 2 is present, as the skip transitions allow for var-
ious lengths of Markov chains. Finally, given that the min-
imum length of the samples is 0.2s and the feature rate is
100Hz, the maximum number of states in the HMMs is set
to 20. Tab. 1 shows that increasing the number of states in the
HMM improves the results for all the evaluation measures.
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Measure
Setting Type 1/2 Type 1/2 Type 1/2 Type 1/2 Type 1/2 Type 1 Type 2

7 states 10 st. 12 st. 14 st. 20 st. random(7;20) 20 st.
mAP 16.49 18.27 19.86 20.61 20.63 20.53 20.20
f@1 57.66 59.47 61.79 62.86 62.46 62.64 62.44
f@100 14.56 15.89 16.82 17.28 17.19 17.13 17.02
Adj. Rand Index 0.130 0.149 0.133 0.136 0.135 0.107 0.153
V-measure 0.597 0.612 0.616 0.619 0.623 0.619 0.621
Norm. Mutual Info 0.585 0.598 0.601 0.604 0.608 0.604 0.608
Adj. Purity 0.476 0.524 0.552 0.556 0.556 0.543 0.539

Table 1. Influence of the randomization on the HMM topology. Bold entries indicate the best result for each evaluation metric.

Evaluation
Similarity

DTW SIC

mAP 3.11 20.61
f@1 14.05 62.86
f@100 4.65 17.28
Adjusted Rand Index 0.003 0.135
V-measure 0.177 0.623
Normalized Mutual Info 0.154 0.608
Adjusted Purity 0.117 0.556
Clusters found 542 542

Table 2. Clustering and retrieval results comparison of the
DTW and SIC similarity on the ESTER2 dataset

However the topology of the HMM itself has no significant
influence as the results are roughly the same for type 1, type
2 or type1/2 runs with 14-20 states.

Results comparing SIC and DTW are reported in Tab. 2,
where SIC was estimated over 2,000 iterations with type 1/2
HMMs having 14 states. We observe that SIC clearly out-
performs DTW for the different evaluation metrics. The ad-
vantage of SIC over DTW is clearly due to the fact that the
exploitation of adequate classifiers, even if trained with artifi-
cially generated labels, allows us to build a similarity measure
with a more complex internal representation of the data, thus
better capturing the resemblance existing between the sam-
ples. Detrimental to DTW is also the scaling of scores be-
tween distinct pairs of samples. On the contrary, SIC does
not face score calibration issues. An in-depth analysis of
the results shows that both similarities perform better on rare
words, e.g., person’s names. A possible explanation to this
observation lies in the burstiness phenomenon: Rare words
tend to appear in specific contexts, while common words are
more likely to occur in more various contexts and hence ex-
hibit greater variability among their samples. While this phe-
nomenon benefits to both SIC and DTW, SIC improvement
over DTW is overall much higher for these rare words, lead-
ing us to believe that SIC benefits more than DTW from sit-
uations with limited variability between occurrences of the
sample from the same class.

In terms of computational cost, the main bottleneck for
SIC are the numerous training and testing phases with the
different classifiers. For our experiments, we developed a
parallel implementation of SIC and ran it on several 8 cores
and 48GB RAM nodes. As an order of magnitude, running
50 iterations of SIC on one single node required on average
9.53GB RAM, 1h12 of actual elapsed time (real), and 4h48
of CPU time cumulated over all processors (sys+usr). This
also raises the question of the convergence speed of the algo-
rithm. While the results reported here were obtained for 2,000
iterations to ensure convergence, we observed in practice that
the similarity usually reaches a stable point around 1,000 it-
erations. In [11], we present a more complete analysis of the
convergence speed and also propose an on-the-fly stopping
criterion for the SIC algorithm, based on the evolution of the
average entropy of the similarity throughout the iterations.

4. CONCLUSION

This paper shows that efficient supervised classification al-
gorithms can be diverted to define a similarity between au-
dio samples. The similarity is said to be implicit as no direct
comparison of the samples is explicitly made, as opposed to
what is done with DTW. Results on audio word comparison
demonstrates that the modeling and generalization capabili-
ties of supervised models yield significantly better measures
of similarity than direct pattern comparison. Clearly, full ad-
vantage can be taken of advanced hidden Markov modeling—
vocal tract length normalization, speaker adaptation, DNN
posteriors, etc.—to yield more accurate similarity. The bottle-
neck remains the computation time but the process is highly
parallel and, as we demonstrated, would benefit from a mas-
sively parallel GPU implementation. A key point is that the
method is applicable to any audio data and reaches beyond re-
trieval and clustering. HMMs are here trained on the dataset
to cluster but could as well be trained beforehand on unla-
beled data. This opens many opportunities, e.g., in template-
based speech recognition or in low-resource languages where
annotated data are scarce.
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