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ABSTRACT

In real-time speech recognition applications, the latency is an im-
portant issue. We have developed a character-level incremental
speech recognition (ISR) system that responds quickly even during
the speech, where the hypotheses are gradually improved while the
speaking proceeds. The algorithm employs a speech-to-character
unidirectional recurrent neural network (RNN), which is end-to-end
trained with connectionist temporal classification (CTC), and an
RNN-based character-level language model (LM). The output val-
ues of the CTC-trained RNN are character-level probabilities, which
are processed by beam search decoding. The RNN LM augments the
decoding by providing long-term dependency information. We pro-
pose tree-based online beam search with additional depth-pruning,
which enables the system to process infinitely long input speech
with low latency. This system not only responds quickly on speech
but also can dictate out-of-vocabulary (OOV) words according to
pronunciation. The proposed model achieves the word error rate
(WER) of 8.90% on the Wall Street Journal (WSJ) Nov’92 20K
evaluation set when trained on the WSJ SI-284 training set.

Index Terms— Incremental speech recognition, character-level,
recurrent neural networks, connectionist temporal classification,
beam search

1. INTRODUCTION

Incremental speech recognition (ISR) allows a speech-based inter-
action system to react quickly while the utterance is being spoken.
Unlike offline sentence-wise automatic speech recognition (ASR),
where the decoding result is available after a user finishes speak-
ing, ISR returns N -best decoding results with small latency during
speech. These N -best results, or hypotheses, gradually improve as
the system receives more speech data. Since ISR is usually em-
ployed for immediate reaction to speech, word stability [1, 2] and
incremental lattice generation [3] have been important topics.

In this paper, we introduce an end-to-end character-level ISR
system with two unidirectional recurrent neural networks (RNNs).
An acoustic RNN roughly dictates the input speech and an RNN-
based language model is employed to augment the dictation result
through decoding. Compared to a conventional word-level backend
for speech recognition system, the character-level ASR is capable of
dictating out of vocabulary (OOV) words based on the pronuncia-
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tion. Also, our model is trained directly from speech and text corpus
and does not require external word dictionary or senone modeling.

There have been efforts to deal with OOV words in conventional
HMM based ASR systems. In [4], graphemes are employed as basic
units instead of phonemes. Also, a sub-lexical language model is
proposed in [5] for detecting previously unseen words.

RNN-based character-level end-to-end ASR systems were stud-
ied in [6, 7, 8, 9, 10]. However, they lack the capability of dictat-
ing OOV words since the decoding is performed with word-level
LMs. Recently, a lexicon-free end-to-end ASR system is introduced
in [11], where a character-level RNN LM is employed. We further
improve this approach by employing prefix tree based online beam
search with additional depth-pruning for ISR.

The character-level ISR system proposed in this paper is com-
posed of an acoustic RNN and an RNN LM. The acoustic RNN is
end-to-end trained with connectionist temporal classification (CTC)
[12] using Wall Street Journal (WSJ) speech corpus [13]. The out-
put of the acoustic RNN is the probability of characters, which are
decoded with character-level beam search to generate N -best hy-
potheses. To improve the performance, a character-level RNN LM
is employed to augment the beam search performance. Also, we pro-
pose depth-pruning for efficient tree-based beam search. The RNN
LM is separately trained with large text corpus that is also included in
WSJ corpus. Unlike for word-level language modeling, conventional
statistical LMs such as n-gram back-off models cannot be used be-
cause much longer history window is required for character-level
prediction. Both acoustic RNN and RNN LM have deep unidirec-
tional long short-term memory (LSTM) network structures [14, 15].
For continuous ISR on infinitely long input speech, they are trained
with virtually infinite training data streams that are generated by ran-
domly concatenating training sequences.

The proposed model is evaluated on a single test sequence that
is generated by concatenating all test utterances in WSJ eval92
(Nov’92 20k evaluation set) without any external reset of RNN states
at the utterance boundaries. The ISR performance is examined by
varying the beam width and depth. Generally, wider beam increases
the accuracy. Under the same beam width, there is a trade-off be-
tween the accuracy and stability (or latency), where the balance be-
tween them can be adjusted by the beam depth.

2. MODELS

2.1. Acoustic model

The acoustic model is a deep RNN trained with CTC [12]. The net-
work consists of two LSTM layers with 768 cells each, where the
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THREE ISSUES ADVANCED MICRO OF AMERICA THE ONLY
WAY TO DIVERSIFY INTO TREATING MODERN ARMIES

LOOKING AHEAD TO MR. LEYSEN WITH AN INTOLERABLE
POP CUT WHEN AN ALL POWERFUL STUDENT SEEKS ITS
CORE DRIVING UPJOHN STOVES

AMERICAN EXPRESS HASN’T YET SWORED PARTICULARLY
WITH THE RESTRUCTURING IS A COMMITMENT TO BUY
POTENTIAL BUYERS IN THE OPEN MARKET

Fig. 1. Example of character-level random text generation with the
RNN LM.

network has total 12.2 M trainable parameters. The model is similar
to the one in the previous work about end-to-end speech recognition
with RNNs [6] except a few major differences. In our case, the RNN
is trained by online CTC [16] with very long training sequences that
are generated by randomly concatenating several utterances. There
is no need to reset the RNN states at the utterance boundary. This
is necessary for ISR systems that runs continuously with an infi-
nite input audio stream. Also, our model has a unidirectional struc-
ture since bidirectional networks that are usually employed for end-
to-end speech recognition are not suitable for low-latency speech
recognition. This is because the backward layers in the bidirectional
networks cannot be computed before the input utterance is finished.

The input of the network is a 40-dimensional log mel-frequency
filterbank feature vector with energy and their delta and double-delta
values, resulting in an 123-dimensional vector. The feature vectors
are extracted every 10 ms with 25 ms Hamming window. The in-
put vectors are element-wisely standardized based on the statistics
obtained from the training set. The output is a 31-dimensional vec-
tor that consists of the probabilities of 26 upper case alphabets, 3
special characters, the end-of-sentence (EOS) symbol, and the CTC
blank label.

The networks are trained with stochastic gradient descent (SGD)
with 8 parallel input streams on a GPU [17]. The networks are un-
rolled 2048 times and weight updates are performed every 1024 for-
ward steps. The network performances are evaluated at every 10 M
training frames. The evaluation is performed on total 2 M frames
from the development set. The learning rate starts from 1 × 10−5

and is reduced by the factor of 10 whenever the WER on the de-
velopment set is not improved for 6 consecutive evaluations. The
training ends when the learning rate drops below 1× 10−7.

We trained the networks on two training sets. The first one is
the standard WSJ SI-284 set and the second one, SI-ALL, is the
set of all speaker independent training utterances in the WSJ corpus.
Note that the utterances with verbalized punctuations are removed
from both training sets. Also, odd transcriptions are filtered out,
which makes the final SI-284 and SI-ALL sets contain roughly
71 and 167 hours of speech, respectively. WSJ dev93 (Nov’93 20k
development set) and eval92 (Nov’92 20k evaluation set) sets are
used as the development set and the evaluation set, respectively.

2.2. Language model

An RNN language model (LM) [18] is employed for the proposed
ISR system since conventional statistical LMs such as n-gram back-
off models are not suitable for character-level prediction since they
cannot make use of very long history windows. Specifically, the
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Fig. 2. Beam search tree consisting of label nodes. The CTC blank
label is not included.
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Fig. 3. CTC state transition between two label nodes. If the two
nodes have the same label, then a transition between the same CTC
state is not allowed.

RNN LM has a deep LSTM network structure with two LSTM layers
where each of them has 512 memory cells, resulting in total 3.2 M
parameters.

The input of the RNN LM is a 30-dimensional vector, where
the current label (character) is one-hot encoded. The output is also
a 30-dimensional vector which represents the probabilities of next
labels. Although the RNN LM is trained to predict the next charac-
ters with only given the current character, the past character histories
are internally stored inside the RNN and used for the prediction. It
is well known that RNN LM can remember contexts for very long
time steps.

As for the acoustic RNN, the RNN LM is trained on a very
long text stream that is generated by attaching randomly picked sen-
tences and inserting EOS labels between sentences. The RNN LM
is trained with AdaDelta [19] based SGD method for accelerated
training and better annealing. The WSJ LM training text with non-
verbalized punctuation, which contains about 215 M characters, is
used for training the RNN LM. Randomly selected 1% of the cor-
pus is reserved for evaluation, on which the final bits-per-character
(BPC) of the RNN LM is 1.167 (character-level perplexity of 2.245).

Random sentences can be generated following the method de-
scribed in [20]. Briefly, the next label is randomly picked following
the probabilities of the current output of the RNN LM and fed back
to the RNN in the next step. By iterating these steps, texts can be
sequentially generated as shown in Figure 1. From the example, it
is clear that the RNN LM learned the linguistic structures as well as
spellings of words that frequently appear.

3. CHARACTER-LEVEL BEAM SEARCH

3.1. Tree-based CTC beam search

Let L be the set of labels without the CTC blank label. The label
sequence z is a sequence of labels in L. The length of the label
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Fig. 4. Example of depth-pruning with the beam depth of 2. The
pruning is performed by selecting a new root node so that the new
depth of the best hypothesis node becomes the beam depth. The
shaded nodes indicate the original active nodes. Also, the path of the
best hypothesis is drawn with thick strokes.

sequence z is less than or equal to the number of input frames. The
objective of the beam search decoding is to find the label sequence
that has the maximum posterior probability given the input features
from time 1 to t generated by the acoustic RNNs, that is,

zmax = argmax
z
P (z|x1:t), (1)

where x1:t is the input features from time 1 to t.
However, the CTC-trained RNN output has one more blank la-

bel. Let L′ be the set of labels (or CTC states) with the additional
CTC blank label, and the path π(i)

t be a sequence of labels in L′

from time 1 to t. The length of the path π(i)
t is the same as t. By the

definition of CTC, every π can be reduced into the corresponding z.
For example, π with “aab-c–a” corresponds to z with “abca”, where
“-” is the blank label.

There can be many paths, π(i)
t , that can be reduced into the same

z. Let F(·) be a function that maps a path to the corresponding label
sequence, that is, F(π(i)

t ) = z, then the posterior probability in (1)
becomes,

P (z|x1:t) =
∑

{∀i|F(π
(i)
t )=z}

P (π
(i)
t |x1:t). (2)

Therefore, if the two different paths π(j)
t and π(k)

t in the decoding
network are mapped to the same z, then they can be merged by sum-
ming their probabilities.

For the beam search, we first represent the lattice with a tree-
based structure so that each node has one of labels in L as depicted
in Figure 2. Then, backtracking from any node generates a unique
label sequence z. To deal with CTC state transitions, we need a state-
based network that is represented with CTC states, L′. As shown in
Figure 3, this can be easily done by expanding each tree node, of
which label is in L, into two CTC states, one with the corresponding
label in L′ followed by the blank CTC label. Since the label-level
(L) search network is based on a tree structure, two different state-
level (L′) paths with different label sequences never meet each other.
This simplifies the problem since there is no interaction between two
different sequence labelings (hypotheses) and (2) is the only equa-
tion that we should concern.

As proposed in [8, 11], external language models can be inte-
grated by modifying the posterior probability term in (1) into:

log(P (z|x1:t)) = log(PCTC(z|x1:t)) (3)
+ αlog(PLM(z)) + β|z|,
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Fig. 5. WER of the proposed online decoding on the evaluation set
with respect to the beam depth. Experiments are conducted with two
acoustic RNNs trained on SI-284 and SI-ALL and beam search
is performed with the beam width (BW) of 128 and 512.

where α is the LM weight and β is the insertion bonus. This modi-
fication can be applied by adding the additional terms with α and β
to the log probability of the destination state when a state transition
between two different label nodes occurs.

The probability of the next label is computed using the RNN
LM when a new active label node is added to the beam search tree.
For this, the RNN LM context (hidden activations) is copied from
the parent node to the child node and the RNN LM processes the
new label of the child node with the copied context. Therefore, each
active node has its own RNN LM context.

3.2. Pruning

Pruning of the search tree is performed by the standard beam search
approach. That is, at each frame, only the active nodes with the top
N hypotheses and their ancestor nodes remain alive after the prun-
ing with the beam width of N . However, this standard pruning, or
width-pruning, cannot prevent the tree from growing indefinitely es-
pecially when the input speech is very long. This gradually degrades
the efficiency of beam search on recent nodes since more and more
hypotheses would be wasted to maintain the old part of the lattice
that is already out of the context range of the RNN LMs.

To remedy this issue, we propose an additional pruning method
called depth-pruning. The procedure is as follows. First, find the
M -th ancestor of the node with the best hypothesis, where M is the
beam depth. Then, the ancestor node becomes a new root node. The
pruning is performed by removing the nodes that are not descendants
of the new root node. In this way, a beam can be better utilized for
recent hypotheses rather than older ones. Figure 4 shows an example
of depth-pruning with the beam depth of 2. Note that the depth of
some nodes can be larger than the beam depth. In the following
experiments, depth-pruning is performed every 20 frames.

4. EXPERIMENTS

The proposed ISR system is evaluated on a single 42-minute speech
stream that is formed by concatenating all 333 utterances in the
evaluation set, eval92 (WSJ Nov’92 20k evaluation set). We use
α = 2.0 and β = 1.5 for the system trained with SI-284, and
α = 1.5 and β = 2.0 for the other one trained with SI-ALL.

The effects of beam depth and width to the final WER are exam-
ined in Figure 5. The gap between the beam width of 128 and 512
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100: HE’S THE
150: HE’S THE ONLY GU
200: HE’S THE ONLY GUY WHO COULD S
250: HE’S THE ONLY GUY WHO COULD SHOW UP IN THE
300: ...IN THE PLAZA I
350: ...IN THE PLAZA IN ROCK R
400: ...IN THE PLAZA IN DRAW RATE OF SEVE
450: ...IN THE PLAZA IN DRAW RATE OF SEVENTY FIVE THO
500: ...IN THE PLAZA AND DRAW CROWD OF SEVENTY FIVE THOUSAND PEO
550: ...IN THE PLAZA AND DRAW CROWD OF SEVENTY FIVE THOUSAND PEOPLE S
600: ...IN THE PLAZA AND DRAW CROWD OF SEVENTY FIVE THOUSAND PEOPLE SAYS ONE LA
650: ...IN THE PLAZA AND DRAW CROWD OF SEVENTY FIVE THOUSAND PEOPLE SAYS ONE LATIN DIPLOM
700: ...IN THE PLAZA AND DRAW CROWD OF SEVENTY FIVE THOUSAND PEOPLE SAYS ONE LATIN DIPLOMAT

Ground truth: HE’S THE ONLY GUY WHO COULD SHOW UP IN THE PLAZA AND DRAW
A CROWD OF SEVENTY FIVE THOUSAND PEOPLE SAYS ONE LATIN DIPLOMAT

Fig. 6. Example of ISR partial results. The best hypothesis is shown at every 50 frames (500 ms). The word “ROCK” is corrected to “DRAW”
after hearing “RATE” and “IN DRAW RATE” to “AND DRAW CROWD” while hearing “PEOPLE”.

Table 1. CER / WER in percent on the evaluation set with online
depth-pruning and offline sentence-wise decoding. The error rates
are reported with two acoustic RNNs trained on SI-284 (71 hrs)
and SI-ALL (167 hrs).

Method Beam width SI-284 SI-ALL

Online (no LM) 512 10.96 / 38.37 9.66 / 35.44
Online 128 4.25 / 9.87 3.56 / 8.56
Online 512 3.80 / 8.90 3.39 / 8.06
Sentence-wise 128 4.46 / 10.30 3.63 / 8.84
Sentence-wise 512 4.04 / 9.45 3.38 / 8.28

Table 2. Comparison of WERs with other end-to-end speech rec-
ognizers in the literature. For reference, WERs of phoneme based
GMM/DNN-HMM systems are also reported. All systems are
trained with SI-284 and evaluated on eval92.

System Model WER
Proposed ISR Uni. CTC + Char. RNN LM 8.90%
Graves and Jaitly [6] CTC + Trigram (extended) 8.7%
Miao et al. [9] CTC + Trigram (extended) 7.34%
Miao et al. [9] CTC + Trigram 9.07%
Hannun et al. [8] CTC + Bigram 14.1%
Bahdanau et al. [10] Encoder-decoder + Trigram 11.3%
Woodland et al. [21] GMM-HMM + Trigram 9.46%
Miao et al. [9] DNN-HMM + Trigram 7.14%

is roughly 0.5% to 1% WER. However, there was little difference
when the beam width increases from 512 to 2048 in our preliminary
experiments. The best performing beam depths are 50 and 30 for
the SI-284 and SI-ALL systems, respectively. This means the
SI-ALL system can recognize speech more immediately than the
SI-284 system. We consider this is because the acoustic model of
the SI-ALL system can embed stronger language model due to in-
creased training data, and can make decision more precisely without
relying on the external language model much. The character error
rate (CER) and WER are reported in Table 1 with the optimal beam
depths. For comparison, we also report sentence-wise offline decod-
ing results without depth-pruning.

The proposed ISR system is compared with other end-to-end
word-level speech recognition systems in Table 2. The other systems
perform sentence-wise offline decoding with bidirectional RNNs.
The best result was achieved by Miao et al. [9] with a CTC-trained
deep bidirectional LSTM network and a retrained trigram LM with
extended vocabulary. The systems with the original trigram model
provided with the WSJ corpus perform worse than our ISR system
with character-level RNN LM. On the other hand, our system is
beaten by the other ones with extended trigram models. However,
more precise comparison of the decoding stages should be done by
employing the same CTC model.

Figure 6 shows the incremental speech recognition result with
the proposed ISR system. The best hypothesis is reported every 50
frames (500 ms). It is shown that the past best result can be corrected
by making use of the additional speech input. For example, the word
“ROCK” is changed to “DRAW” in the frame 450 by listening the
word “RATE”. Moreover, the correction of “IN DRAW RATE” to
“AND DRAW CROWD” during hearing the word “PEOPLE” in the
frame 500 is a good evidence that long term context can also be
considered.

5. CONCLUDING REMARKS

A character-level incremental speech recognizer is proposed and an-
alyzed throughout the paper. The proposed system combines a CTC-
trained RNN with a character-level RNN LM through tree-based
beam search decoding. For online decoding with very long input
speech, depth-pruning is proposed to prevent indefinite growth of
the search tree. When the proposed model is trained with WSJ
SI-284, 8.90% WER can be achieved on the very long speech that
is formed by concatenating all utterances in the WSJ eval92 eval-
uation set. The incremental recognition result shows the evidence
that character-level RNN LM can learn dependencies between two
words even when they are five words apart, which are hard to be
caught using conventional n-gram back-off language models.

Note that the proposed system only requires speech and text cor-
pus for training. External lexicon or senone modeling is not needed
for training, which is a huge advantage. Moreover, it is expected that
OOV words or infrequent words such as names of places or people
can be dictated as they are pronounced.
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