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ABSTRACT

In our previous work, we developed a GPU-accelerated speech
recognition engine optimized for faster than real time speech recog-
nition on a heterogeneous CPU-GPU architecture. In this work, we
focused on developing a scalable server-client architecture specifi-
cally optimized to simultaneously decode multiple users in real-time.
In order to efficiently support real-time speech recognition for mul-
tiple users, a “producer/consumer” design pattern was applied to
decouple speech processes that run at different rates in order to han-
dle multiple processes at the same time. Furthermore, we divided
the speech recognition process into multiple consumers in order to
maximize hardware utilization. As a result, our platform architec-
ture was able to process more than 45 real-time audio streams with
an average latency of less than 0.3 seconds using one-million-word
vocabulary language models.

Index Terms— Automatic Speech Recognition, Graphics Pro-
cessing Unit, Distributed Speech Recognition, Multi-user speech
recognition

1. INTRODUCTION

Modern multi-user applications are often challenged by the need to
scale to a potentially large number of users while minimizing the
degradation in service response even under peak load conditions.
Large vocabulary continuous speech recognition (LVCSR) applica-
tions present an additional hurdle because of the disparity between
the number of potentially active users and the limited system ability
to provide computationally intensive automatic speech recognition
(ASR) services [1].

Traditional ASR engine implementation in distributed speech
recognition (DSR) system assigns one thread or a process per client
until the number of clients approaches the server peak capacity to
prevent performance degradation [1, 2, 3]. This approach generally
works well on modern homogeneous multi-core CPU platforms. The
GPU-accelerated speech recognition engine is a good alternative so-
lution to overcome the capacity limitation of conventional multi-core
ASR systems because GPUs can accelerate decoding speed signif-
icantly [4]. However, GPUs can only process one GPU kernel at a
time and the number of GPU devices per server are limited. GPU
processes can become a serial bottleneck in the overall ASR system
although the GPUs significantly accelerate computationally inten-
sive phases. Therefore, a multi-user ASR engine architecture needs
to be specially optimized for CPU-GPU heterogeneous platform to
efficiently support many users.

When optimizing a multi-user speech recognition engine on the
CPU-GPU heterogeneous platform, there are two critical factors that
must be considered. The first factor is the optimization of memory
usage. Memory must be efficiently managed in order to simulta-
neously support hundreds of users per server while retaining large
vocabularies and managing complex acoustic and language models.
The second critical factor is maximizing hardware utilization. In
real-time audio streams only allow a limited number of audio sam-
ples. That is insufficient to fully utilize GPU computation capability.

In this paper, we will extend our previous work, [4], to han-
dle multiple users more efficiently on the CPU-GPU heterogeneous
platform. We will introduce a “producer/consumer” design pattern
to share large models efficiently and we will also propose a new ASR
architecture to maximize the utilization of GPU by interleaving au-
dio frames from multiple clients.

2. PREVIOUS WORKS

In order to handle as many clients as possible, an ASR should de-
code quickly. [5, 6, 7, 8, 9, 10] improved decoding speeds signif-
icantly by implementing an ASR engine on a GPU. In [11, 4], we
proposed a novel on-the-fly rescoring algorithm specifically opti-
mized for heterogeneous CPU-GPU platforms to resolve GPU mem-
ory limitations when large language models are used (≥ 12GB). In
this approach, acoustic score computation and n-best Viterbi search
were performed on the GPU using a WFST composed with a small
language model. During the graph search, partial hypotheses were
copied and rescored on-the-fly using a large language model stored
on the CPU. Using this approach, we were able to realize recogni-
tion with a 1 million vocabulary language model at 11× faster than
real-time, and approximately 22× faster than a highly optimized
single-threaded CPU implementation. However, extending this work
to support multiple users is challenging.

Previous research, [1, 2, 3, 12], has proposed server arrange-
ments to improve the capacity and efficiency of the overall speech
recognition system. [1] suggest an event-driven, input-output non-
blocking server framework, where the dispatcher, routing all the sys-
tems events, buffers the clients queries on the decoder proxy server,
which redirects the requests to the one of free ASR engines. [12]
presents an alternative architecture, where the entire ASR system has
been decomposed into 11 functional blocks and interconnected via
hub to allow a more efficient parallel use of the ASR system. How-
ever, these works investigate only the optimal server arrangement
assuming a ASR engine can support multiple users efficiently. [13]
proposed a GPU-accelreated ASR engine architecture investigating
an optimal task scheduling to minimize the task wait time and share
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Fig. 1. Baseline multi-user speech recognition engine system architecture

the acoustic model parameters to process more users. However, this
work did not propose an ASR engine architecture that leveraged
mutli-core CPUs and GPUs at the same time. The evaluation was
also limited because it used simulated audio traces.

3. GPU-ACCELERATED MULTI-USER SPEECH
RECOGNITION

Executing multiple single user ASR engine processes with a simple
router process to assign a client to each ASR is a straightforward
approach to developing a multi-user ASR engine using an existing
ASR engine. In this approach, each ASR process could be idle be-
cause the real-time audio stream allows only a limited number of
audio samples in a given time. a greater number of ASR processes
have to be initiated than the number of processors to achieve maxi-
mum hardware utilization. This may cause severe context switching
and synchronization overheads that degrade system responsiveness.
In addition, there could be possible redundant memory allocations
if each ASR process loads large models (i.e. language model) sepa-
rately.

To resolve these issues, we introduce the “producer/consumer”
designed pattern to both the baseline and the proposed multi-user
ASR engine architecture. The “producer/consumer” design pat-
tern is based on the “master/slave” pattern, and its objective is to
enhance data sharing between multiple loops running at different
rates. As with the standard “master/slave” design patterns, the
“producer/consumer” pattern is used to decouple processes that
produce and consume data at different rates. Data queues are used
to communicate data between loops. These queues offer the ad-
vantage of data buffering between producer and consumer loops.
The “producer/consumer” pattern has the ability to easily handle
multiple processes at the same time while iterating at individual
rates. We completely decouple intermediate decoding results (i.e.
partial hypotheses, lattice, etc.) from the ASR engine and store it in
task independently. In this way, the consumer threads can share and
process multiple tasks in time-multiplexed manner.

3.1. Baseline System Architecture

We developed a baseline ASR engine architecture applying the “pro-
ducer/consumer” design pattern to the straightforward approach as
shown in Fig. 1. In this architecture, the consumer loop consists of
two types of consumers; an Iteration control consumer (CIC ), and an
ASR consumer (CASR). These consumers are connected each other
by two non-blocking queues; QIC , QASR. Note that each consumer
type can have multiple consumer threads.

First, the producer thread (main thread) accepts an incoming
client request, over a communication channel (i.e. TCP/IP, UDP),
creates a task and adds it to QIC . Then, any available CIC thread
takes this task from the queue, initializes data structures and adds it
to next queue, QASR. In order to maximize processor utilization, nf

(i.e. 32 frames, 320 ms) speech frames of the task will be interleaved.
Note that the task is added to the QASR only when enough speech
samples are received. In ASR consumer threads extract nf feature
vectors and compute acoustic scores. These acoustic scores will be
used to conduct the n-best Viterbi beam search over the WFST net-
work composed with small language model. Partial hypotheses gen-
erated during the search are rescored using the large language model
as explained in [4]. All consumer threads share an acoustic model,
a WFST network and a large language model to prevent redundant
memory allocations. In the end, the partial recognition result will be
sent to the client if it is updated and the task will be added to QIC

until the end of the audio stream.

3.2. Proposed System Architecture

Usually, a GPU works like a co-processor in CPU-GPU heteroge-
neous platform. This means only one task can be processed on a
GPU at a time. For example, Compute Unified Device Architecture
(CUDA) enabled GPUs have thousands of CUDA cores and can ini-
tiate more than thousands of threads concurrently. However, these
threads execute one instruction at a time following the Single In-
struction Multi Thread (SIMT) scheme similar to the vector proces-
sor [14]. Some GPU devices can execute multiple kernels concur-
rently. In most cases, however, only a single GPU kernel can be
processed at a time because each GPU kernel uses the full computa-
tional capability of a GPU. Therefore, GPU kernels will be serialized
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Fig. 2. Proposed multi-user speech recognition engine system architecture

when multiple CPU threads are sharing a GPU. As a result, the ASR
consumer threads in the baseline architecture are not able to process
assigned tasks independently. This severely limits the advantage of
the “producer/consumer” design pattern.

To resolve this issue, the proposed architecture divides the ASR
consumer into five different types of consumers as shown in Fig.
2; Iteration control consumer (CIC ), Feature extraction consumer
(CFE), Acoustic score computation consumer (CASC ), Graph
search consumer (CGS), and the Post processing consumer (CPP ).
These consumer threads are cascaded via five queues; QIC , QFE ,
QASC , QGS , and QPP . In this architecture, each consumer can col-
lect multiple tasks in the queue to improve GPU utilization because
GPU computes larger data more efficiently than multiple executions
of smaller data sets [14]. Therefore, the acoustic score computation
consumer can process more data by interleaving audio frames from
multiple tasks. In addition, this architecture allows assignment of
more CPU threads or GPUs to the bottleneck consumer type to im-
prove the overall ASR engine performance. Furthermore, updating
ASR algorithm is more convenient than the baseline architecture.
For example, the “on-the-fly rescoring” algorithm can be replaced
with a lattice rescoring algorithm by replacing the graph search con-
sumer without modifying other consumers. However, the proposed
architecture has a complex thread configuration. The number of
threads per each consumer type should be selected carefully in order
to achieve maximum throughput without latency degradation.

4. EXPERIMENTAL EVALUATION

We evaluated the effectiveness of the proposed multi-user speech
recognition engine architecture on a CPU-GPU heterogeneous plat-
form on a large vocabulary version of the WSJ task as explained
in [4]. A deep neural network (DNN) acoustic model was trained
using the WSJ data set with 23 dimensional Filterbank coefficient
feature with with global cepstral mean normalization as described in
[15, 16]. The resulting acoustic model contained 3,431 context de-
pendent phonetic states and consisted of 5 hidden layers, each with
2,048 hidden units.

A WFST was composed with a highly pruned 1 Million vocab-

n-gram # of n-gram WFST (MB) LM binary (MB)
3 (Pruned) 6.3M 1,258 173

4 769.9M - 19,543

Table 1. Size of WFSTs and binary language models with 1M Vo-
cabulary.

CPUs GPUs
O.S. Ubuntu 14.04 LTS

Processor Xeon E5-2697v3 NVIDIA Titan X
Cores 14 physical cores 3072 CUDA Cores

Clock speed 2.60 GHz 1.22GHz
Memory 128 GBytes DDR4 12 GBytes GDDR5

Table 2. Evaluation Platform Specification.

ulary 3-gram language model as shown in Table 1. The composed
WFST is optimized offline for efficient parallel time-synchronous
graph traversal on a GPU-accelerated platform as described in [8, 9].
A 4-gram language model was applied during decoding for partial
hypotheses rescoring. The evaluation platform consisted of a single
NVIDIA Titan X GPU processor with an Intel Xeon 14-core CPU as
shown in Table 2.

Using these models, the best WER we achieved was 5.1% with
a decoding speed of 0.07 RTF, in the offline decoding evaluation.
We selected our operating point at WER 5.33% where decoding
speed was 0.02 RTF. During the online evaluation, the real-time au-
dio streaming clients read t seconds of audio samples from the audio
file and send it as an audio message in t seconds interval. In this
evaluation 2,048 audio samples (16KHz, 16 bits/sample) are sent to
the ASR server for every audio message transaction. Clients are lo-
cated in separated servers and are connected with the ASR server via
the wired local network. These audio messages are collected until
32 batch audio frames (320 ms) are interleaved for batch process-
ing. The number of frames per batch is closely related to the partial
recognition result update frequency and the end of speech detection.
Therefore, one should not use very large size batches in a real-time
audio transcription tasks.
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Fig. 3. Relationship between number of the active real-time audio streams and the average latency.

CPU CPU-GPU
Baseline Proposed Baseline Proposed

# lookup 1 8
# CIC 2 1 2 1
# CASR 14×1 - 2×8 -
# CFE - 2 - 2
# CASC - 10 - 1
# CGS - 4×1 - 2×8
# CPP - 2 - 1
Total 16 19 18 22

Table 3. Consumer threads configurations (CASR and CGS use ’#
lookup’ threads per consumer for the parallel language model look-
ups) [4].

Table. 3 shows thread configurations. As we mentioned in Sec-
tion 3.2, in order to get the maximum throughput while maintaining
low latency, the number of threads for type consumer type should be
selected carefully. Thread configurations in Table 3. were selected
carefully after comparing many different possible configurations.

4.1. Decoding Performance

We compared baseline architecture and proposed architecture on
both homogeneous multi-core CPU platform and CPU-GPU het-
erogeneous platform as described in Table 3. For the ideal user
experience, ASR server should have capability to provide results in
a given time (latency) regardless of speech duration. In this evalu-
ation, we measured average latency between the end of speech in
the audio stream to the arrival of the final recognition result when
multiple active audio streams are processed concurrently to evaluate
responsiveness of multi-user speech recognition systems.

Figure 3 shows the relationship between the average latency
and the number of active clients. The proposed architecture of the
CPU-GPU heterogeneous platform, “Proposed (CPU-GPU)”, han-
dled more than 45 active real-time audio streams at an average la-
tency of 0.3 seconds which is 1.36 times more server capacity com-
pared to the GPU baseline architecture, “Baseline (CPU-GPU)”,
and 1.73 times more than the CPU baseline architecture, “Baseline
(CPU)”. In addition, proposed architecture improved the average la-
tency from 0.2 sec to 0.04 sec when processing single client by accel-
erating the acoustic score computation and the graph search phases
42× and 5.6× respectively.

Fig. 4 shows the processing time (RTF) of all ASR sub pro-
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Fig. 4. Processing speed (RTF) of ASR phases (N = number of
active audio streams).

cesses when the number of active clients (N ) are 20 and 45. As we
explained in Section 3.1, the baseline architecture processes a single
task at a time on the GPU. Therefore, speeds of ASR sub-processes
are unaffected when the ASR system handled more active clients.
The waiting times were increased because the GPU was fully occu-
pied. Acoustic score computation time increased only 15 times and
38 times when processing 20 and 45 users in the proposed architec-
ture because it utilizes maximum GPU computational capability by
interleaving audio frames from multiple tasks as explained in Sec-
tion 3.2.

5. CONCLUSIONS

In this paper, we proposed a novel multi-user speech recognition ar-
chitecture on a heterogeneous CPU-GPU platform. Proposed archi-
tecture efficiently shared large language models and acoustic models
by applying the “producer/consumer” design pattern and maximiz-
ing GPU utilization and computational capability by interleaving au-
dio frames across the different users. As a result, the proposed archi-
tecture was able to process more than 45 concurrent real-time audio
streams in less than 0.3 seconds. The architecture also able to pro-
cess 1.73 times more real-time audio stream than the CPU baseline
architecture and 1.36 times more clients than the GPU baseline ar-
chitecture.
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