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ABSTRACT

Automatic speech recognition (ASR) systems rely on large
quantities of transcribed acoustic data. The collection of
audio data is relatively cheap, whereas the transcription of
that data is relatively expensive. Thus there is an interest
in the ASR community in active learning, in which only a
small subset of highly representative data chosen from a large
pool of untranscribed audio need be transcribed in order to
approach the performance of the system trained with much
larger amounts of transcribed audio. In this paper, we com-
pare two basic approaches to active learning: a supervised
approach in which we build a speech recognition system
from a small amount of seed data in order to make the selec-
tion of a limited amount of additional audio for transcription,
and an unsupervised approach in which no intermediate sys-
tem recognition system built from seed data is necessary. Our
best unsupervised approach performs quite close to our super-
vised approach, with both outperforming a random selection
scheme.

Index Terms— supervised active learning, unsupervised
active learning, limited-resource automatic speech recogni-
tion, active learning

1. INTRODUCTION

Active learning is a special case of machine learning in
which the learning algorithm is allowed to query an infor-
mation source for additional ground-truth annotations during
the learning process. In the case of speech recognition, the
training algorithm identifies segments of untranscribed audio
for which a transcript is requested. We are working in the
context of the IARPA Babel challenge in which one hour
of transcribed seed data is provided in a language and par-
ticipants are allowed to request transcripts for an additional
two hours of transcriptions. The resulting three hours of
transcribed data are then used to build an ASR system.

A strong unsupervised approach to identify “good” seg-
ments for annotation is valuable for a number of reasons.
First, when developing a seed set of annotated data, it would
be helpful to prioritize representative or informative data
points (for ASR, utterances). This would lead to improved

seed models and, thereby, superior active learning selection
criteria. Second, unsupervised active learning has the poten-
tial to save computational resources. Training ASR models is
a resource-intensive task. To train an end-to-end ASR system
can take days. Because of this, seed data is frequently used
to build a weaker ASR system to generate selection criteria,
with a strong, state-of-the-art (i.e. “all the bells and whis-
tles”) system built only on the larger, augmented training set.
Unsupervised data selection avoid the resource requirements
of the first-pass training altogether. Third, supervised active
learning has the weakness of not necessarily being able to
select samples that represent classes unseen in the seed data;
unsupervised active learning is not hindered by the same
limitation.

In this paper we examine unsupervised approaches to ac-
tive learning, in which no model is required to be built from
the original seed data in order to decide which of the remain-
ing segments of speech would be most usefully transcribed.
We contrast the unsupervised approach with a more tradi-
tional supervised scheme in which we build an ASR system
from the seed data and use that model to decode the remain-
ing segments as the first step in making the selection of the
remaining data for which to request a transcription. The work
is evaluated under the IARPA Babel evaluation framework for
Swahili using the one hour seed data (transcribed data) and
selection pool (untranscribed data) as described by IARPA-
babel202b-v1.0d ALP (“Active Learning Pack”) distribution.
We show that we can come quite close to the supervised ap-
proach with a well-designed unsupervised one; the supervised
WER on a development set was 67.8% whereas the best un-
supervised WER on the same set was 68.0%. Both of these
outperformed a random selection which had a WER of 69.6%.

In this paper, we first describe our baseline system which
is a supervised active learning Swahili speech recognition sys-
tem built with one hour of transcribed seed data plus two ad-
ditional hours of transcribed acoustic data selected by maxi-
mizing grapheme entropy per segment (Section 3.1). We then
describe various approaches to unsupervised active learning
using the same one hour seed data to select an additional two
hours of data for transcription (Section 3.2). We then present
results (Section 4) and conclude (Section 5).
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2. RELATED WORK

Traditional active learning schemes for ASR systems employ
uncertainty sampling techniques [1]. This involves an itera-
tive process: an ASR is trained on transcribed utterances and
used to label untranscribed utterances; a confidence score is
calculated for each labeled instance; the utterance with low-
est confidence is selected for transcription then added to the
ASR’s training set before re-training the ASR and repeating
the process. Thus each iteration tries to obtain only examples
of utterances that the ASR has mis-labeled. This framework
requires a measure of uncertainty or confidence to be assigned
to the examples. In [2], Tur et al. developed a method for as-
signing confidence scores to untranscribed utterances based
on the ASR lattice output. In [3], rather than using a thresh-
old confidence score to select utterances, Riccardi et al. fil-
ter the confidence scores through an informativeness function
to rank the utterances before selecting a subset of utterances.
They found that a function which penalizes both high and low
scores works better, thus avoiding utterances where the ASR
is either highly confident or highly unconfident. In [4], Yu
and Gales focus on improving ASR performance by targeting
discriminative training where performance is sensitive to tran-
scription quality. The authors develop a scheme for directed
manual transcription of a small portion of poorly recognized
data which is shown to improve performance relative to au-
tomatic transcription techniques. The work by Fraga-Silva et
al. [5] is close to our domain as their experiments are con-
ducted with a low-resource language from the IARPA-Babel
corpus using the same settings (Babel Active Learning task).
The authors investigate a number of metrics for selection and
find that HMM-state entropy and vocabulary size correlate
best with WER. They use HMM-states to model the acoustic
space and yield selections with highest entropy with a greedy
algorithm.

More recent work has focused on the use of submodular
functions [6] for data selection. A submodular function F is a
value function over sets satisfying the following property for
any S ⊆ S′:

F (S ∪ {u})− F (S) ≥ F (S′ ∪ {u})− F (S′). (1)

Informally, submodular functions capture the notion of “di-
minishing returns”: the marginal benefit of adding an exam-
ple u to a set S is at least the marginal benefit of adding
the same example to a larger superset S′ ⊇ S. The prop-
erty of submodularity guarantees that, for a monotonically
non-decreasing F , a greedy algorithm with a cardinality con-
straint will yield a near-optimal selection. Formulating data
selection as optimization of a submodular objective function
is particularly well suited for active learning tasks where data
must be selected in batches constrained by a budget. A num-
ber of submodular objective functions have been considered
and proposed in the literature. In [7], the facility location
function, which measures similarity of a subset S to the en-
tire pool P , was used to select a representative subset. In

contrast to the graph based facility location function, Wei et
al. [8] introduce a multilayer feature based submodular func-
tion. This objective seeks a representative selection over one
feature space while also attaining a diverse selection by con-
sidering interactions between a high- and a low-level feature
space. In [9], Chen et al. also formulate a submodular ob-
jective to attain both a representative and diverse selection by
considering a (single-layer) feature based function over the
acoustic characteristics.

3. ACTIVE LEARNING

Following the IARPA Babel evaluation scenario, all active
learning selection strategies use the same, predefined, one-
hour seed set of data, and select an additional two hours. As
a baseline, we construct a random selection of two-hours of
data. In this approach, the selection pool is segmented using
a VAD system. Based on this segmentation, segments are se-
lected at random, with no additional selection criteria. This
random selection of segments led to a WER of 69.6%. The
rest of this section describes the supervised and unsupervised
selection criteria explored.

3.1. Supervised Active Learning
The first step in selecting a two-hour subset of data from the
30-hour pool of candidates is to build a multilingual-feature
context-dependent Gaussian mixture model (GMM) from the
one hour of Swahili seed data using a graphemic lexicon. We
used the IBM Attila toolkit [10] for building this model.

The multilingual feature vector was a 62-dimensional
bottleneck features from a DNN trained on the 11 Babel
base period and option period 1 language data appended to
the standard 40-dimensional IBM PLP+LDA+STC speaker-
independent feature vector. Additional details of this feature
generation approach can be found in [11] .

In order to make the segment selection, we do a consensus
decode [12] of the untranscribed segment pool and calculate
a grapheme-based entropy for each segment. The grapheme-
based entropy is approximated by splitting the words appear-
ing in the consensus network into their constituent graphemic
strings and incrementing the grapheme count in a histogram
by the probability weighting for that word. The grapheme pdf
is normalized by the total counts and the entropy of the pdf is
calculated.

We found that ignoring speaker identity and greedily
selecting segments based on their entropy out-performed a
scheme in which segments were selected in a “round-robin”
fashion by speaker (the segment having the highest entropy
for a given speaker was chosen as we rotated through speak-
ers.) Segments were required to have a duration greater than
0.75 seconds and not to come from the beginning 100 sec-
onds or after the 500th second of a speaker turn in order to
be considered in the selection. The supervised active learning
approach led to a WER of 67.8% on the development Swahili
test set.
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3.2. Unsupervised Active Learning
In unsupervised active learning, we investigated methods of
selecting a high quality 2 hour subset of the ALP pool without
the use of transcripts or the output of a first-pass ASR system.
Avoiding the ASR training and decoding process allowed for
faster turnaround time in experimentation. Also, prior work
in the active learning literature indicates that bootstrap (first-
pass) ASR systems typically require far in excess of 1 hour
of training data. We are skeptical that the confidence scores
from a system built on such a small amount of data will be
informative.

Our selections are based on two methods: 1) selecting
based on speech rate of utterances, 2) selecting representative
samples based on acoustic features.

Selection based on speech rate. This method uses the
speaking rate of an utterance as a proxy for the phone or word
density of that utterance. The assumption here is that a selec-
tion that contains more phones, and thus, more words, would
provide more training instances for both acoustic model train-
ing and more tokens for language modeling. One risk is that
this approach introduces a bias toward rapid speech.

Selecting high density utterances yields a maximum num-
ber of tokens for ASR training. Speech rate estimation was
performed using signal processing techniques based on syl-
lable nuclei detection. We explored two publicly available
speech rate estimators: AuToBI [13, 14] and an implementa-
tion of mrate [15]. We found that the AuToBI implementation
of the Villing 2004 algorithm was a more effective measure of
speaking rate on the one-hour training pool, and, thus, used
this approach for selection.

Selection of representative samples. Here, we employ
methods for selecting utterances which are most representa-
tive of the acoustic feature distribution of the ALP pool. This
set of approaches is based on the assumption that a maximally
representative selection of the overall acoustic feature space
represents an optimal set of ASR training data. This should
have only minimal impact on language modeling, though we
expect the resultant “graphone” distribution to be more or less
representative if the acoustic feature space is effectively sam-
pled. We evaluate two selection schemes: distribution match-
ing and subset selection using a facility location function.
This, and subsequent, acoustic feature analyses are performed
on the multi-lingual features described in Section 3.1.

To facilitate analysis, we discretize the acoustic feature
space by learning a k-means codebookC1, C2, ..., Ck over the
utterances with an encoding function g. For an utterance u
with m frames, we find the centroid closest to each frame
and assign a vector g(u) = 1

m [c1(u) · · · ck(u)], where ci(u)
counts the number of occurences of centroid Ci. For each of
the selection functions, we generate a codebook with k = 256
entries.

KL-divergence Minimization: This distribution match-
ing approach is a sampling scheme for selecting utterances
such that the feature distribution of selected utterances (sam-

ple distribution) matches the feature distribution of the ALP
selection pool (reference distribution). We use KL-divergence
between the sample distribution and the reference distribution
as an the objective function. We explore two algorithms to
perform distribution matching. The first algorithm employed
a greedy method to grow the selection iteratively such that the
updated selection had the minimal KL-divergence to the ref-
erence at the end of each iteration. This algorithm is fairly
slow, as the KL-divergence between the sample distribution
and reference-distribution must be recalculated each time an
utterance is added to the sample distribution. The second al-
gorithm employed a Knapsack-problem formulation. In this,
each utterance is assigned a value inversely proportional to
its KL-divergence from the reference. Then, the goal was to
fill a 2 hour knapsack with the maximum total value of utter-
ances, which was optimized using the 0-1 knapsack dynamic
programming formulation. While this is much faster, it has
a tendency to oversample common features and undersample
less frequent areas of the acoustic feature space.

Subset selection: The facility location function (Equation
2) is a submodular function which measures the similarity of
a selection S to the remainder of the ALP pool U [7].

f(S) =
∑
u∈U

max
s∈S

wu,s (2)

Then we build a graph with edge weights w(u, s) mea-
suring the similarity between g(u) and g(s), where g(.) is the
encoding function mentioned above. Our experiments used
cosine similarity for the weight function w(u, s). Optimiz-
ing over the function (2) using a greedy method then yields a
representative subset.

As in the supervised selection (cf. Section 3.1), we had
initially explored methods whereby we select the best seg-
ment within for each speaker and rotated across speakers in a
round robin fashion. We found, however, in the unsupervised
context as well, that omitting this speaker-balancing criterion
led to improved selections.

Selection with diversity reward: One limitation of the
facility location method, similar to the knapsack formulation
of the KL-divergenge approach, is that it can oversample the
most common features (i.e. central data points) while omitting
less frequently observed areas of the feature space. Thus, we
include a criteria to promote a more diverse selection set. We
investigate extending the facility location method to yield a
selection which was representative of the pool while selecting
a diverse set of utterances. This was performed by regulariz-
ing the facility location objective with a reward for diversity
based on cluster membership of the utterances (cf. Equation
3). Since the cluster diversity function is also submodular
[16], this objective is optimized using the greedy method.

f(S) =
∑
u∈U

max
s∈S

wu,s + λ
∑
i

δ(S ∩ Ci 6= ∅) (3)
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The second term in this equation counts the number of
codebook entries that are represented in the utterance. Thus,
utterances that contain a large range of acoustic features are
preferred to those which contain fewer.

4. RESULTS AND DISCUSSION

We evaluate the WER on the Swahili development set. This
is a set of 10 hours of speech. Results across all selection
methods are presented in Table 1.

Method WER
Knapsack KL-div 73.0
Facility Location 69.8
Random Selection 69.6
Speech rate 69.1
Greedy KL-div 68.5
Facility Location with Cluster diversity 68.0
Grapheme Entropy 67.8

Table 1. Swahili WER from 3-hr Active Learning ASR

We find that the supervised selection approach to result in
the most effective active learning selection, yielding a WER
of 67.8. However, this is only 0.2% better than the best unsu-
pervised approach, Facility Location with Cluster diversity.

We also notice how poor a selection criteria the knapsack-
based formulation of the KL-divergence minimization ap-
proach is. This results in a training set that performs quite a
bit worse, 3.4% absolute, than Random selection. While the
Facility Location approach performs better, it also performs
worse than Random by 0.2%. Both of these techniques take
an approach by which the “centrality” of each utterance is
measured with the selection set being constructed from only
the most typical utterances. Neither includes any measure
of diversity. This suggests that when constructing a 3-hour
training set, diversity is an important criteria. When we turn
our attention to the two corresponding approaches, Greedy
KL-div, and Facility Location with Cluster Diversity, we
find much better performance, 68.5, and 68.0 respectively.
Recall that Greedy KL-div iteratively constructs a selection
set whose acoustic feature distribution matches the overall
selection set. By updating the KL-divergence between the
selection and target, this approach has the ability to select
utterances that, when viewed in isolation, are outliers with
respect to the overall feature distribution, but when viewed
with respect to the current selection set are representing an
under-sampled region of the feature space. The Cluster Di-
versity measure augments the facility location approach by
encouraging the selection of utterances that contain more
diverse acoustic features.

The speech rate selection criteria outperforms the random
selection but is not competitive with the diversity sensitive
distribution matching approaches.

The distribution matching approaches are based on the as-
sumption that ASR training data should have a representative
distribution of the acoustics of the language being recognized.
This may be an effective approach for constructing an effec-
tive acoustic model, mapping from the acoustic feature space
to the target phone (or here, graphone space).

However, ASR training involves not only conversion from
acoustics to the phonological space, but also effective pronun-
ciation and language modeling. Thus, there is a slight differ-
ence between optimizing the representativeness of the acous-
tic feature space and ASR performance. So while submodular
functions provide an effective way to optimize the represen-
tativeness of the selection set with respect to the acoustics,
there is a mismatch between this optimization and optimizing
WER. Likely through a greater match between the selection
criteria and WER objective, the supervised, grapheme entropy
approach represents a more effective active learning criteria.

5. CONCLUSION

This work is performed as part of the IARPA Babel program
to develop speech recognition and keyword search for low-
resource languages. We present results on a variety of ap-
proaches to active learning for automatic speech recognition.
While we find that we can identify a training set that outper-
forms random selection by 1.8% WER, it is difficult, with
three hours of training data, to make a very large improve-
ment.

We find that supervised active learning, where a first-pass
ASR system is trained and the hypotheses of the system are
used in selecting a larger set of annotated data for training to
be effective. However, we also demonstrate the use of un-
supervised selection approaches which do not require a first-
pass ASR system; the best performing of which is only 0.2%
worse than a supervised approach. The most effective un-
supervised approaches require that the selection set be both
informative, but also diverse. Future work will investigate the
impact of combining effective supervised and unsupervised
selection approaches and investigating supervised criteria in-
volving multiple ASR training passes.
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