
EFFICIENT NON-LINEAR FEATURE ADAPTATION USING MAXOUT NETWORKS

Steven J. Rennie, Xiaodong Cui, and Vaibhava Goel

IBM Thomas J. Watson Research Center
NY, USA

{sjrennie, cuix, vgoel}@us.ibm.com

ABSTRACT

In this paper we present a simple and effective method for doing
non-linear feature adaptation using Maxout networks. The technique
overcomes the need to sample the partition function during train-
ing, and overcomes the need to compute the Jacobian term and its
gradient for each training case. Results on the Switchboard 1 task
demonstrate that the approach can improve a state-of-the-art hybrid
ASR system that utilizes i-vectors.

Index Terms— Deep Neural Networks, Maxout networks, i-vectors,
Jacobian, Speaker adaptation.

1. INTRODUCTION

The question of how to effectively adapt pattern recognition sys-
tems based on feed-forward deep neural networks (DNNs) when
additional random variables, related to the task, are known, has re-
ceived much attention recently [1–6]. In practice, simply adapting
the parameters of a globally trained DNN to produce a conditional
one is generally not effective, unless the adaptation is highly con-
strained, since such adaptation is essentially limited to reinforcing
DNN’s own predictions.
One approach that has proven to be very effective for both speaker
recognition and speaker-adaptive ASR has been to augment the in-
put data by concatenating a low-dimensional feature embedding de-
rived from label-specific data [1, 7] . I-vectors, for example, utilize
a simple generative model of the data to extract such features, by
performing factor analysis on the means of each speaker w.r.t. one
or more GMM-based universal background models (UBMs) [1], and
remain a state-of-the-art technique for speaker adaptation today.
Adaptation based on generative models has the advantage that the
model must adapt to explain the observed data rather than the DNN’s
predictions. In, addition, ASR system adaptation based on genera-
tive models are less sensitive to decoding errors, since the decoded
words generally have high acoustic confusability with what was ac-
tually said.
Maximum likelihood linear regression (MLLR) methods [8, 9] are
historically among the most successful techniques for adaptation in
traditional ASR systems based on GMMs, and have been used in
conjunction with regression trees over the set of Gaussians in the
acoustic model to implement conditionally linear feature transfor-
mations. However, such transformations cannot be trivially con-
verted into a feature transformation for use by a DNN (and as we
will show, are easily outperformed by DNN-based feature transfor-
mations). Constrained MLLR (CMLLR), on the other hand, utilizes
a single linear transformation and so can be implemented as a data
transformation, and remains an important component of state-of-the-
art DNN-based ASR systems.

A natural approach to generalizing CMLLR is to utilize a DNN to
estimate a non-linear feature transformation [5]. However, this is
not straightforward because the Jacobian term implied by introduc-
ing such non-linearities must be taken into account when the data
transformation is being learned. In [5] the general problem is con-
sidered, and maximum likelihood non-linear transformations (ML-
NTs) are learned incrementally in network ”blocks” by using impor-
tance sampling. In [5], the authors showed that the approach sig-
nificantly outperforms CMLLR when utilized by a discriminatively
trained, GMM-based ASR system. This general framework, how-
ever, is computationally intensive, because sampling (100 samples
per Gaussian in [5]) must be utilized to estimate the partition func-
tion for each new training case.
In this paper, we propose a simple and effective approach to non-
linear feature adaptation using Maxout networks, which we call fea-
ture Maxout networks (FMNs). This approach utilizes a cascade
of network layers with the Maxout non-linearity, when each hidden
layer is restricted to have d hidden units, where d is the input fea-
ture dimension. Since the network is conditionally linear for any
given input, the Jacobian term and its gradient can be computed in
closed form, and so sampling is trivially avoided. This configura-
tion, furthermore, has the advantage that it is trivial to initialize from
a linear model, and so the determinant and gradient of the effective
Jacobian for each layer and training case can be approximated by
that of the initial linear seed transformation, with negligible loss in
performance—this eliminates the need to compute a unique Jacobian
term for each new training sample.
Results on the the English Transtac task reported in [5] show that
these networks perform on-par with the more general approach pre-
sented in [5], at a fraction of the computational cost. Results on
the Switchboard 1 LVCSR task indicate that the transformations can
even improve the WER performance of state-of-the-art hybrid sys-
tems that utilize i-vectors.

2. BACKGROUND: MAXIMUM LIKELIHOOD
NON-LINEAR TRANSFORMATION (MLNT)

In [5], the authors introduce DNNs for ML feature transformation
using GMM-HMMs. For a given feature transformation, y = f(x),
they consider learning f under the (conditional) model, p(x) =
exp{−E(f(x))}

Z
, where Z ≡

∫
x

exp{−E(f(x))}dx is the partition
function. The gradient of (conditional) log-likelihood of the model
L w.r.t. the DNN weights W of a given layer is:

∂L

∂W
=

∂E

∂W
+

∫
x

p(x)
∂E

∂W
dx, (1)

where ∂E
∂W

= ∂f(x)
∂W

Σ−1[f(x)− µ] for Gaussian p(). Because f(x)
is non-linear, the integral in (1) (andZ) cannot be evaluated in closed

5310978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

form even for Gaussian p(), and so the authors utilize importance
sampling to estimate these quantities. Transformations are trained
incrementally in blocks, using the following procedure:

1. Estimate a CMLLR transform for the current output of the
network, yn−1 = xn.

2. Initialize the next network block, yn = f(xn), to the CM-
LLR transform (autoencoder, MSE criterion).

3. For each training case, Gaussian:

(a) generate (100) samples in xn using the CMLLR model
as the proposal distribution, q(xn).

(b) Re-weight samples by p(xn)
q(xn)

and approximate the gra-
dient of the weights (i.e. the integral in 1) of block n.

(c) Re-use these samples/weights to update the gradient of
the weights of lower blocks ∀i < n (a further approx.).

4. update the weights of the block using (S)GD.
5. repeat for each block added.

This approach significantly outperforms CMLLR when utilized
by a discriminatively trained, GMM-based ASR system, but is
clearly computationally intensive, because sampling (100 samples
per Gaussian in [5]) must be utilized to estimate the gradient for
each training case. For further details consult [5].

3. FEATURE MAXOUT NETWORKS (FMNS)

A limitation of the MLNT approach [5] is that for each Gaussian,
the (gradient of) the partition function Z must be estimated for each
new transformation at (training)/test time. An alternative approach,
which leads to non-linear transformations that can be directly ap-
plied at decoding time like CMLLR, is to instead enforce differ-
ential conservation of probability 1. The pdf of a feature space
x ∈ Rn can be defined w.r.t. the pdf of a transformed feature space,
y = f(x), y ∈ Rn, by:

p(x) =

∣∣∣∣∂y∂x
∣∣∣∣ p(y), (2)

by conservation of probability, for an invertible transformation f().
For an invertible linear transformation, y = Ax, this reduces to:

p(x) = |A| p(y). (3)

Similarly, it is immediately clear that for any mapping that is condi-
tionally linear given x:

p(x) = |Ax| p(y), (4)

where Ax ≡ A(x). Therefore for conditionally linear transforma-
tions, the Jacobian term (log |Ax|), and the gradient of the Jacobian
term (A−T

x) can readily be computed. Note however, that this im-
plies that Ax must be invertible everywhere, and so DNNs based on
rectified linear (ReLU) units are not, in general, suitable for the task.
Maxout networks [11] generalize rectified linear (max[0, a]) units,
utilizing non-linearities of the form:

sj = max
i∈C(j)

ai, (5)

where the ai are defined by inner products with the outputs of the
layer below:

ai =
∑
k

wikxk + bi. (6)

1Note that for linear models, these two approaches are equivalent.

 +

 Noise

Projection

Dulplicatation

(two filters per maxout unit)

Learned, linear output layer of block N

Initial input layer of block N+1

Fig. 1. As in [5] for MLNTs, FMNs are learned block by block. For
FMNs, a new block is defined by evolving the linear output layer of
the previous block into a maxout input layer for the current block, by
duplicating projections and adding noise, as depicted. A new linear
final layer is then initialized to the identity plus noise.

Maxout networks have been investigated by several ASR researchers
and found to be very effective acoustic models [12, 13], particularly
when trained using annealed dropout [14–16]. Here we utilize Max-
out networks for maximum likelihood based feature adaptation.
Maxout units naturally have multiple detection ”modes”, and so are
ideally suited for generalizing CMLLR. Specifically, if we restrict
our hidden layers to have d hidden units and f filters per unit, we
can initialize a Maxout hidden layer from a linear one by duplicating
each row f times, and then adding noise:

ai = ainit
j + εi, (7)

∀i ∈ C(j), ∀j, where εi ∼ N (0, σ2I). This process is depicted
and described further in Figure 1. Note that this restricts only the
number of hidden units that can be utilized—as many linear projec-
tions as desired can be taken by suitably defining f . This alleviates
the need to pre-train the network to produce a desired initial trans-
formation (e.g. identity or CMLLR), which is usually necessary to
control overfitting, and is typically achieved by training the network
to produce the corresponding initial target features.
An additional advantage of this approach is that when a Maxout net-
work for feature transformation is restricted in this way, the determi-
nant of the Jacobian can be approximated by the linear transform that
it is initialized with. We have verified empirically that this results in
negligible performance loss. This eliminates the need to compute
the inverse of the Jacobian for every training case (O(d3) for feature
dimension d), which means that we can optimize the transformation
in an efficient manner using SGD even when d is large.
In summary, the process of building and FMN proceeds as follows:

1. Convert the final layer from linear to maxout as described
above (CMLLR transform for first block).

2. Add a new linear layer above, this, together with the new
maxout layer, defines a new network ”block”.

3. Train the entire network. ∂L
∂Ax

= T1+T2 = ∂ log p(y)
∂Ax

+A−T
x

for all layers & training cases, compute T1 using backprop.

4. Repeat for the next block, until overfit is observed or a pre-
specified maximum number of blocks reached.

Note that, in contrast with MLNTs, which have and unconstrained
hidden layer size, no pre-training of the new block is required.

5311

4. EXPERIMENTS

Experiments were conducted on a Transtac English task, and the
Switchboard 1 LVCSR tasks, which are described in the sections
that follow, along with the models that were used for adaptation and
decoding for these tasks. All FMNs were trained using stochastic
gradient decent (SGD) with an initial learning rate of 1e−5, which
was cut by a factor of a half whenever the (maximum likelihood) ob-
jective increased over an epoch of the test data for a given speaker.
To be consistent with the usual process for training CMLLR and en-
sure stable adaptation, learning was done by computing GMM state
posteriors using the initial model (CMLLR for the first block, the
learned n-block model when learning block n+1), and then complet-
ing 1 or 2 complete (SGD-based) M-steps to update the parameters
of the FMN (1 if not specified). For all experiments, the acoustic
weight used by the baseline model when adapted with CMLLR was
held fixed for all models, and the number of epochs used to adapt
each FMN block was held fixed at 19, unless otherwise explicitly
noted. This in some cases slightly reduced the gains afforded by
FMNs, but makes the comparison of results more meaningful.

4.0.1. Transtac

We compare the test-time only adaptation performance of FMNs on
the 11 speaker Transtac English task that MLNT was tested on in [5],
which contains about 3-4 minutes of 16 KHz data recorded in a quiet
environment, for each speaker. The baseline acoustic model utilized
was trained under the boosted MMI (BMMI) criterion on feature
MMI (FMMI) features [] using 60 hours of clean speech. The model
has 3K quinphone states and 50K Gaussians.

4.0.2. Switchboard 1

The Switchboard 1 training data consists of 262 hours of segmented
audio from English telephone conversations between two strangers
on a pre-assigned topic. The test set is the Switchboard portion
of the Hub5 2000 evaluation set which contains 2.1 hours (21.4K
words, 40 speakers) of Switchboard data. The decoding vocabulary
has 30.5K words and 32.9K pronunciations and all decodings were
performed with a 4M 4-gram language model. The DNN acoustic
models utilized for all experiments were annealed dropout trained
Maxout networks with 4 hidden layers of 1414 units and a final
hidden layer of 512 units, which is used to predict 9K context-
dependent states. Dropout was applied to all hidden layers of the
network, and annealed to zero over the first 10 of 25 epochs of train-
ing. These models were learned on ±5 spliced, (CMLLR or FMN)
adapted LDA features, with 100-dimensional i-vectors appended, as
described in [1]. Feature transformations for Switchboard 1 were
learned based on a 300K Gaussian FSA model over 40 dim. LDA
features. Discriminative training of the hybrid DNNs was done us-
ing Hessian-free sequence (HF) training under the minimum Bayes
risk (MBR) criterion [17], where noted.

5. RESULTS

5.1. Transtac

Table 1 compares the performance of FMNs with that of the gen-
eral maximum likelihood non-linear transform (MLNT) approach
reported in [5]. On this task FMNs perform on-par with the general
MLNT approach, while alleviating the computationally expensive
procedure of sampling the partition function for each training case
and each Gaussian (100 samples per Gaussian were used in [5]).

The use FMNs also alleviates the need to pre-train each new block
to predict the features produced by FMLLR on the previous block, as
described previously. We also investigated the performance FMNs
as a function of the number of filters per hidden maxout unit on this
task, and found that using more than 2 filters per unit did not lead to
better adaptation performance.

Blocks MLNT [5] FMNs
(sampling) f=2 f=4

1 24.7 24.5 24.6
2 24.2 24.3 24.3
3 24.0 24.0 24.2
4 23.7 23.9 24.0
5 23.6 23.6 23.7

Table 1. Word error rate (WER) as a function of number of blocks
and filters per maxout unit (f) on a Transtac English task [5]. The
baseline FMMI+BMMI GMM system WER is 25% after CMLLR
(and 27.3% before).

5.2. Test-time only adaptation on Switchboard 1

Table 2 compares the performance FMNs to FMLLR and MLLR
as implemented in the Attila Toolkit [18], when ML-trained FSA
models are used to decode Hub5’00. The main purpose of this ini-
tial experiment was to see how FMN transformations compare with
model space MLLR. Looking at the results, we can see that FMNs
can match and then outperform FMMLR+MLLR with just one and
two non-linear transformation blocks, respectively. On Hub5’00 this
MLLR recipe estimates 5-7 transforms per speaker. One and two
block FMNs with 2 filters per maxout unit conversely utilize the
equivalent of 3 and 5 transformations per speaker in terms of total
number of parameters, respectively.

Model WER (%)
FMLLR (2 M-steps) 18.7
FMLLR+MLLR 18.2
FMN, 1 block (1 M-step) 18.4
FMN, 1 block, (2 M-steps) 18.1
FMN, 2 blocks (1 M-steps) 18.1
FMN, 2 blocks (2 M-steps) 17.8

Table 2. Test-time adaptation of an FSA model ML-trained on the
Hub5’00 SWB task.

Model WER (%) Errors
Baseline 11.0 2352
Baseline FMLLR on HF txt 11.0 2365
FMN, 1 block (1 M-step) 10.9 2336
FMN, 1 block (1 M-step + 1 epoch) 10.9 2330
FMN, 1 block (1 M-step + 2 epochs) 10.9 2328
FMN, 1 block (1 M-step + 3 epochs) 10.8 2323
FMN, 1 block (1 M-step + 4 epochs) 10.8 2330

Table 3. Test-time adaptation of a DNN trained on FSA+ 100-dim
i-vector features on the Switchboard 1 (300 hrs). The number of
epochs of the second M-step that was executed are as indicated.

5312

Model WER (Errors)
Exact JT Approx. JT

Baseline DNN 16.1% (3446) -
FMN DNN, 1 block 15.9% (3400) 15.9% (3403)
FMN DNN, 2 blocks 15.7% (3374) 16.0% (3419)
FMN DNN, 3 blocks 15.7% (3359) 15.9% (3403)
FMN DNN, 4 blocks 15.6% (3340) 15.6% (3345)
FMN DNN, 5 blocks 15.8% (3389) 15.8% (3389)

Table 4. Multi-pass decoding using DNNs XE-trained on 50 hours
of SWB1 data (transformed LDA features+100-dim i-vectors). Re-
sult using FMNs trained using the exact and linear approximation to
the Jacobian term (JT) of each layer are depicted.

Table 3 investigates using FMNs for test-time only adaptation in con-
junction with a state-of-the-art, HF-trained Maxout network that uti-
lizes annealed dropout during training [14–16], and appends 100-
dimensional i-vector features to (transformed) LDA features. The
performance of this highly optimized network improves with test-
time only FMN feature adaptation, which is encouraging. However,
we observed that test-time only adaptation for DNNs using FMNs
must be very carefully applied, since the features fed into the DNN
are not exactly matched to those presented during training (these re-
sults are probably overtuned). Additional FMN blocks did not result
in further performance improvements.

5.3. Train & test-time adaptation on Switchboard 1 50 hr subset

Table 4 compares the performance of FDNN features using annealed
dropout, cross-entropy (XE) trained Maxout models trained on a 50
hour subset of Switchboard 1. Here FDNN-based speaker adaptation
is applied at both training and test time, and at test time, FMN block
n, is trained using the text hyp. generated by the DNN that utilizes
FMN block n − 1 to adapt its features. By using 4 FMN blocks,
the WER of the baseline system on Hub4’00 is reduced by 0.5%
absolute. Note that FMNs trained using a linear approximation to
the Jacobian (greedily, by fixing lower layers) achieve very similar
performance. Note also that for the FMNs trained in this paper that
d = 40 and so the exact Jacobian term gradient can be computed
efficiently relative to the cost of computing the DNN acoustic model.

Model WER (Errors)
XE HF

Baseline DNN 16.1% (3446) 14.4% (3084)
FMN DNN, 1 super-block 15.8% (3393) 14.2% (3046)

Table 5. Two-step decoding using DNNs (XE,ST)-trained on 50
hours of SWB1 data (transformed LDA features+100-dim I-vectors).

Table 5 compares the performance of FDNN features using annealed
dropout, and cross-entropy (XE) and Hessian-free sequence (HF)
trained Maxout models trained on a 50 hour subset of Switchboard
1. Here an FMN with two Maxout layers per block (rather than the
usual 1) is utilized, which we call a superblock. Here we can see
that 2-step decoding results in gains for both the XE and HF trained
models.

Model WER (Errors)
XE HF

Baseline DNN 12.5% (2672) 11.0% (2359)
FMN DNN (4 blks.) 12.3% (2640) 10.9% (2334)
Baseline CNN - 11.2% (2398)
Baseline DNN + CNN - 10.0% (2153)
FMN DNN + CNN - 9.9% (2126)

Table 6. Results on the full Switchboard 1 task. Here ”+” denotes
posterior averaging to derive likelihoods for the hybrid ASR system.

6. TRAIN & TEST-TIME ADAPTATION ON
SWITCHBOARD 1

Table 6 reports results on on the full Switchboard 1 task. Again,
small but consistent gains are realized using a four block FMN. Note
that re-estimating the CMLLR transform used by the baseline DNN
using the HF hyps. (here and throughout the paper) did not improve
performance on Switchboard 1. The FMN-adapted DNN trained on
FSA+i-vector features, when combined with an AD-trained Maxout
CNN trained on log-Mel features (for details consult [14]), achieves
a WER of 9.9%, which is a new record for the task.

7. DISCUSSION

In this paper we have presented a simple and efficient approach to
doing non-linear feature adaptation using Maxout networks, which
avoids sampling the partition function, and can avoid computing the
Jacobian term for each new training case. We have shown that FMNs
perform on-par with more general MLNTs, and shown that such
adaptation can consistently (albeit slightly) improve the performance
of a highly optimized hybrid DNN system without tuning the acous-
tic weight or number of iterations of adaptation applied per block.
From a practical vantage point, all of our experimentation so far in-
dicates that the technique is simple enough, fast enough, and robust
enough to be a reliable component of commercial ASR systems in
data-plenty scenarios.
Note however, that we have not characterized nor experimented with
the performance of FMNs as a function of the amount of available
adaptation data, as both the Switchboard 1 and Transtac datasets pro-
vide several minutes of data per train/test speaker. The investigation
of early stopping approaches (e.g. number of blocks to learn for a
given amount of data) and forms of maximum-a posteriori (MAP)
adaptation [10] for FMNs in data-limited scenarios are interesting
future research directions. Other possible future work includes uti-
lizing FMNS in conjunction with more powerful generative models
such as RBMs to adapt higher dimensional features, investigating
the use of such transforms for other adaptation applications such as
noise robustness, and exploring the possibility of deriving i-vector-
like features from such transformations.
Two limitations of the FMNs presented in this work are that the
network topology is highly constrained, and the adaptation parame-
ters are not shared. Currently we are investigating the use of FMNs
to generalize speaker-codes [7] to unsupervised (no reference text)
adaptation scenarios.

8. ACKNOWLEDGEMENTS

The authors would like to thank George Saon, Samuel Thomas, and
the anonymous reviews for helpful feedback.

5313

9. REFERENCES

[1] George Saon, Hagen Soltau, David Nahamoo, and Michael
Picheny, “Speaker adaptation of neural network acoustic mod-
els using i-vectors,” in Automatic Speech Recognition and Un-
derstanding (ASRU), 2013 IEEE Workshop on. IEEE, 2013, pp.
55–59.

[2] Andrew Senior and Ignacio Lopez-Moreno, “Improving dnn
speaker independence with i-vector inputs,” in Proc. ICASSP,
2014.

[3] Yajie Miao, Hao Zhang, and Florian Metze, “Towards speaker
adaptive training of deep neural network acoustic models,”
2014.

[4] Pawel Swietojanski and Steve Renals, “Learning hidden unit
contributions for unsupervised speaker adaptation of neural
network acoustic models,” in Spoken Language Technology
Workshop (SLT), 2014 IEEE. IEEE, 2014, pp. 171–176.

[5] Xiaodong Cui and Vaibhava Goel, “Maximum likelihood
nonlinear transformations based on deep neural networks,”
in Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on. IEEE, 2015, pp. 4320–
4324.

[6] Roger Hsiao, Tim Ng, Stavros Tsakalidis, Long Nguyen, and
Richard Schwartz, “Unsupervised adaptation for deep neural
network using linear least square method,” in Sixteenth An-
nual Conference of the International Speech Communication
Association, 2015.

[7] Shaofei Xue, Ossama Abdel-Hamid, Hui Jiang, Lirong Dai,
and Qingfeng Liu, “Fast adaptation of deep neural network
based on discriminant codes for speech recognition,” Audio,
Speech, and Language Processing, IEEE/ACM Transactions
on, vol. 22, no. 12, pp. 1713–1725, 2014.

[8] Christopher J Leggetter and Philip C Woodland, “Maximum
likelihood linear regression for speaker adaptation of continu-
ous density hidden markov models,” Computer Speech & Lan-
guage, vol. 9, no. 2, pp. 171–185, 1995.

[9] Mark JF Gales, “Maximum likelihood linear transformations
for hmm-based speech recognition,” Computer speech & lan-
guage, vol. 12, no. 2, pp. 75–98, 1998.

[10] Olivier Siohan, Tor André Myrvoll, and Chin-Hui Lee, “Struc-
tural maximum a posteriori linear regression for fast hmm
adaptation,” Computer Speech & Language, vol. 16, no. 1,
pp. 5–24, 2002.

[11] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron
Courville, and Yoshua Bengio, “Maxout networks,” arXiv
preprint arXiv:1302.4389, 2013.

[12] Yajie Miao, Florian Metze, and Seema Rawat, “Deep maxout
networks for low-resource speech recognition,” in Automatic
Speech Recognition and Understanding (ASRU), 2013 IEEE
Workshop on. IEEE, 2013, pp. 398–403.

[13] Pawel Swietojanski, Jinyu Li, and Jui-Ting Huang, “Investiga-
tion of maxout networks for speech recognition,” in Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE Interna-
tional Conference on. IEEE, 2014, pp. 7649–7653.

[14] George Saon, Hong-Kwang J Kuo, Steven Rennie, and
Michael Picheny, “The ibm 2015 english conversational
telephone speech recognition system,” arXiv preprint
arXiv:1505.05899, 2015.

[15] Steven J Rennie, Vaibhava Goel, and Samuel Thomas, “An-
nealed dropout training of deep networks,” in Spoken Lan-
guage Technology Workshop (SLT), 2014 IEEE. IEEE, 2014,
pp. 159–164.

[16] Steven J Rennie, Pierre L Dognin, Xiaodong Cui, and Vaib-
hava Goel, “Annealed dropout trained maxout networks for
improved lvcsr,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2015 IEEE International Conference on. IEEE,
2015, pp. 5181–5185.

[17] Brian Kingsbury, Tara N Sainath, and Hagen Soltau, “Scalable
minimum bayes risk training of deep neural network acoustic
models using distributed hessian-free optimization,” in Thir-
teenth Annual Conference of the International Speech Com-
munication Association, 2012.

[18] Hagen Soltau, George Saon, and Brian Kingsbury, “The ibm
attila speech recognition toolkit,” in Spoken Language Tech-
nology Workshop (SLT), 2010 IEEE. IEEE, 2010, pp. 97–102.

5314

