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ABSTRACT

Recently, recurrent neural network with bidirectional Long Short-
Term Memory (RNN-BLSTM) acoustic model has been shown to
give great performance on the TIMIT [1] and other speech recog-
nition tasks. Meanwhile, the speaker code based adaptation method
has been demonstrated as a valid adaptation method for Deep Neural
Network (DNN) acoustic model [2]. However, whether the speak-
er code based adaptation method is also valid for RNN-BLSTM has
not been reported to the best our knowledge. In this paper, we study
how to conduct effective speaker code based speaker adaptation on
RNN-BLSTM and demonstrate that the speaker code based adap-
tation method is also a valid adaptation method for RNN-BLSTM.
Experimental results on TIMIT have shown that the adaptation of
RNN-LSTM can achieve over 10% relative reduction in phone error
rate (PER) compared to without adaptation. Then, a set of compara-
tive experiments are implemented to analyze the different contribu-
tion of the adaptation on cell input and each gate activation function
of the BLSTM. It’s found that the adaptation on cell input activation
function is more effective than the adaptation on each gate activation
function.

Index Terms— RNN-BLSTM, Speaker Adaptation, Speaker
Code, Activation Function

1. INTRODUCTION

Speaker adaptation techniques aim to optimize the performance of
speech recognition system for the target speaker or a group of speak-
ers. It can be realized by either transforming a pre-trained speaker-
independent (SI) model to match the target speaker or modifying
the target speaker features to match the pre-trained SI system with
the adaptation data of the target speaker. There are many effective
techniques in speaker adaptation for conventional HMM/GMM a-
coustic model, such as MAP [3][4], MLLR [5][6], and CMLLR
[7]. Recently, there are many speaker adaptation techniques pro-
posed that have shown effective in hybrid NN/HMM. For example,
Linear Input Network (LIN [8]), Linear Hidden Network (LHN [9])
and Linear Output Network (LON [10]) all attempt to add additional
transforming layers to the initial SI neural networks. These methods
alleviate over-fitting to some extent. In [11][12], the neural network-
s adapt the hidden activation functions towards the target speaker.
Another way in [13], the technique that uses Kullback-Leibler (KL)
divergence as regularization in the training criterion adapts the mod-
el conservatively by forcing the senone distribution estimated from
the adapted model to be close to that from the unadapted model, by
which it can avoid over-fitting during adaptation. In [14][15][16],

they utilize speaker i-vector features to facilitate feature-space or
model-space speaker adaptation. In [17], singular value decompo-
sition (SVD) on the weight matrices in pre-trained SI DNN was ap-
plied, and then the singular value for the target speaker was tuned
with adaptation data to realize adaptation. Similarly, SVD method
is also used in [18], and adaptation is then performed by updating a
square matrix inserted between two low-rank matrices. To enhance
the robustness of adaptation, [19][20] estimate the adaptation param-
eters via maximum a posteriori (MAP) linear regression, which nat-
urally incorporates prior knowledge into the adaptation process. Re-
cently, in [2][21][22][23][24], several fast speaker adaptation meth-
ods on DNN and CNN based on the so-called speaker code have been
proposed, which have been shown a promising adaptation method in
speaker adaptation.

However, whether the speaker code based adaptation method
is also valid for RNN-BLSTM has not been reported to the best
our knowledge. In this paper, we’ve studied how to conduct speak-
er code based adaptation on RNN-BLSTM in small-scale TIMIT
speech database, and proved its validity in adaptation for RNN-
BLSTM. We first conduct speaker code based adaptation on cell
input activation function of the BLSTM and compare the perfor-
mance effect of different speaker code sizes. Then, we’ve found
the code size that yields the best performance was much larger than
DNN [21]. Furthermore, there are two adaptation weights which re-
spectively connect speaker code to two different directions, forward
and backward, in each layer of RNN-BLSTM. As a consequence,
larger speaker code size and more adaptation weights introduce
more parameters than DNN. To address this issue, we make a share
of the forward and backward adaptation weights in each layer of
RNN-BLSTM to decrease about half of the introduced parameters
for speaker adaptation without a significant loss in final recogni-
tion accuracy. Secondly, we investigate different contribution of
the adaptation on cell input and each gate activation function of
the BLSTM. It’s found that the adaptation on cell input activation
function is more effective than the adaptation on each gate activation
function.

2. REVIEW OF RNN-BLSTM

Normally, for a length T input vector x = (x1, x2, ..., xT ), a
conventional recurrent neural network (RNN) computes its hid-
den active vector h = (h1, h2, ..., hT ) and output vector y =
(y1, y2, ..., yT ) given t from 1 to T are as follows:

ht = σ(Wxhx
t +Whhh

t−1 + bh) (1)
yt = Whyh

t + by (2)
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Where Wxh,Whh and Why denote weight matrices, bh and by de-
note bias vectors, and σ denotes sigmoid activation function in the
hidden nodes.

However, in practice, RNN can’t model the long term informa-
tion due to the vanishing gradient and exploding gradient problems
as described in [25]. One effective method to address these problem-
s is by using Long Short-Term Memory (LSTM) architecture [26],
which uses memory cells to store information and gets something
useful. Fig. 1 illustrates a LSTM memory cell, which contains one
self-connected cell and three controlling gates (the red lines indicate
time-delayed connections). In the memory cell, input gate and out-
put gate manage information flow into and out of the memory cell.
Meanwhile, the forget gate [27] is used to provide a way for the cell
to reset themselves. Furthermore, there are peephole weights con-
necting the gates to the cell, which is used for obtaining more accu-
rate Constant Error Carousel (CEC) information [28]. The equations
of one memory cell are as follows:

it = σ(Wxix
t +Whih

t−1 +Wcic
t−1 + bi) (3)

f t = σ(Wxfx
t +Whfh

t−1 +Wcfc
t−1 + bf ) (4)

at = tanh(Wxcx
t +Whch

t−1 + bc) (5)
ct = f t � ct−1 + it � at (6)
ot = σ(Wxox

t +Whoh
t−1 +Wcoc

t + bo) (7)
ht = ot � tanh(ct) (8)

Where i, f , o and a are respectively the input gate, forget gate,

tanh tanh
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Fig. 1. The architecture of LSTM network with a memory cell [29].

output gate and cell input activation vector, c is a self-connected state
vector, all of which are the same size as the hidden vector h. Wci,
Wcf and Wco are peephole connection weights which are diagonal,
so element m in each gate vector only receives input from element
m of the cell vector.

Nevertheless, RNN with conventional LSTM is unidirectional,
can not model the future context. RNN with BLSTM [30] does mod-
el the future context by processing the input vector sequence in both
forward and backward directions, with two different hidden weights
in the same hidden layer. Generally, RNN-BLSTM may achieve bet-
ter performance of speech recognition than RNN with conventional
LSTM.

3. SPEAKER CODE BASED ADAPTATION OF
RNN-BLSTM

As illustrated in Fig. 2, the structure of speaker code based adap-
tation model proposed in [2] can be regarded as a common model
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Fig. 2. The structure of speaker code based adaptation model (n = 5
layers).

adaptation structure for different neural network (NN) models, such
as DNN as in [2] and RNN-BLSTM to be studied in this paper.
W (l) represent all l-th layer weights of NN, V (l) are the connec-
tion weights between the speaker codes and l-th layer. s(p) stands
for the speaker code that belongs to p-th speaker. For simplicity,
taken DNN for example, the propagation equation is as follows:

y(l) = σ(W (l)y(l−1) + b(l) + V (l)s(p)) (9)

Where y(l) denotes the hidden active vector of l-th hidden layer, and
b(l) is the bias vector.

As is indicated in eq.(9), speaker code based adaptation can be
seen as a kind of speaker adaptation on activation function, in which
it biases the inputs of activation function towards the target speak-
ers. For a BLSTM memory cell, it contains one self-connected cell
and three controlling gates that control the transmission of the infor-
mation flow by their corresponding activation functions. As we can
see from the equations of one memory cell, there are three kinds of
activation functions, cell input (eq.(5)), cell output (eq.(8)) and gate
(eqs.(3), (4) and (7)). Especially, the input of the cell output activa-
tion function is ct (see eq.(6)), which is computed by f t, ct−1, it

and at separately from forget gate activation, time-delayed of self-
connected state, input gate activation and cell input activation. As a
result, the bias of the cell output activation function is equivalently
included in f t, ct−1, it and at. Hence, we don’t carry out speaker
adaptation on cell output activation function.

The joint speaker adaptive training based on speaker codes
(SAT-SC) method in [2] is also adopted in this paper. In SAT-SC,
the weights W (l) is initiated by a pre-trained one, s(p) and V (l)

are all initiated randomly. During training, W (l), s(p) and V (l) are
jointly learned using the back propagation (BP) algorithm, where
speaker labels are also available for training the speaker codes of all
speakers in the training set. During adaptation, supervised method
is utilized, where a small number of labeled adaptation utterances
are available for each new test speaker. In this phase, W (l) and V (l)

remain unchanged, the new speaker code is updated based on the
SGD algorithm until convergence. After learning the new speaker
code for each test speaker, a speaker-dependent (SD) neural network
for each test speaker is reconstructed while testing.
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3.1. Speaker Adaptation in Cell Input Activation Function (SA-
CIAF)

From the above analysis, we realize that the cell input activation
function in eq.(5) of BLSTM may play a similar role to DNN hid-
den activation function in speaker code based adaptation. As a first
trial, we choose to do Speaker Adaptation in Cell Input Activation
Function (SA-CIAF). In SA-CIAF, eq.(5) is modified into eq.(10):

at = tanh(Wxcx
t +Whch

t−1 + bc + Vcs
(p)) (10)

Where Vc denotes the adaptation weights for cell input which con-
nect speaker code of p-th speaker, s(p), to current layer.

Frame-level cross entropy (CE) criterion is adopted as the objec-
tion function E for SAT-SC of RNN-BLSTM. The gradients of Vckj

(the weight that connects between the k-th element in the speaker
code and the j-th node in current hidden layer) can be computed as:

∂E

∂Vckj

=
∂E

∂atj
(1− atja

t
j)s

(p)
k (11)

Where atj is j-th element of at.
Likewise, the gradient of E with respect to each element of all

speaker codes can be computed based on the chain rule. As the prop-
agation errors from all layers contribute to the derivative of s(p), the
gradient accumulates across n-1 layers (except input layer) and J
nodes as follows:

∂E

∂s
(p)
k

=
1

n− 1

n−1∑
l=1

J∑
j=1

∂E

∂atj
(1− atja

t
j)Vckj (12)

3.2. Speaker Adaptation in Gate Activation Function (SA-GAF)

In this section, we discuss how to implement Speaker Adaptation in
Gate Activation Function (SA-GAF). The propagation functions of
the three gates in eqs.(3), (4) and (7) for SA-GAF can be modified
respectively as:

it = σ(Wxix
t +Whih

t−1 +Wcic
t−1 + bi + Vis

(p)) (13)

f t = σ(Wxfx
t +Whfh

t−1 +Wcf c
t−1 + bf + Vf s

(p)) (14)

ot = σ(Wxox
t +Whoh

t−1 +Wcoc
t + bo + Vos

(p)) (15)

Where Vi, Vf and Vo represent three kinds of adaptation weights
separately for the adaptation of the input gate, forget gate and output
gate.

If we define g represents i or f or o, the gradient of E with
respect to each element of all speaker codes, s(p), and three kinds of
adaptation weights, Vi, Vf and Vo, may be computed as follows:

∂E

∂Vgkj

=
∂E

∂gtj
(1− gtj)g

t
js

(p)
k (16)

∂E

∂s
(p)
k

=
1

n− 1

n−1∑
l=1

J∑
j=1

∂E

∂gtj
(1− gtj)g

t
jVgkj (17)

Where Vgkj is the connection weight between the k-th element in
the speaker code and j-th node in current layer, and gtj is the j-th
element of gt.

Generally, RNN with BLSTM [30] does model the future con-
text by processing the input vector sequence in both forward and
backward directions, with two different hidden weights in the same
hidden layer. So that the adaptation weights of the forward and
backward directions in the same hidden layer are different, but their
derivatives are computed in the same way, which are described in
eq.(11) for SA-CIAF or in eq.(16) for SA-GAF.

4. EXPERIMENTS

In this section, we evaluate the adaptation scheme for RNN-BLSTM
discussed in section 3 on TIMIT phone recognition task.

We use the standard 462-speaker training set and remove all SA
records (i.e., identical sentences for all speakers in the database) s-
ince they may bias the results. A separate development set of 50
speakers is used for tuning all the meta parameters. Results are re-
ported using the 24-speaker core test set, which has no overlap with
the development set. Each speaker in the test set has eight utterances.
The 39 dimensional PLP features (static, first and second derivatives)
are extracted and 183 target class labels (3 states for each one of the
61 phones) are labeled for the utterances in training set and develop-
ment set utterances by GMM-HMM. After decoding, the 61 phone
classes were mapped to a set of 39 classes for scoring purpose [31].
In our experiments, a bi-gram language model in phone level, esti-
mated from the training set, is used in decoding.

Before SAT-SC training of RNN-BLSTM, we first pre-train a SI
RNN-BLSTM baseline as initialization of the W weights (see Fig.
2), and initiate speaker codes s and adaptation weights V drawn u-
niformly from [-0.1, 0.1]. During SAT-SC training, the learning rate
for s and V fixed at 0.2 and for W fixed at 0.0001 for 3 iterations,
and is halved for another 2 iterations, the momentum is kept as 0.9.
During adaptation, we use a fixed learning rate of 0.2 to learn speaker
code of each target speaker. Since each test speaker has eight utter-
ances in total. Adaptation and testing is conducted for each speaker
based on cross validation (CV). In each CV run, for each speaker,
eight utterances are divided into 7 utterances for adaptation and the
remaining 1 utterance for testing. This is repeated eight times for
each speaker. The overall recognition performance is the average of
all eight runs.

1) Performance of SA-CIAF with Different Speaker Code Sizes:
In this experiment, we’ve trained a SI RNN-BLSTM model with the
size of 3*250 (3 hidden layers, 250 BLSTM memory cells for each
layer) as baseline, it achieved PER of 20.9% as illustrated in Table
1. The performance of SA-CIAF with different speaker code sizes
(varying from 300 to 2000) is also shown in Table 1. The results
in Table 1 show that adaptation performance is not very sensitive
to speaker code size when given it from 500 to 2000 (PER varying
from 18.8% to 19.3%). However, the performance of speaker code
size of 300 is 19.9% in PER (with the relative phone error reduction
of 4.78%). This is probably because the speaker code size of 300 is
too small to model the information of the target speaker. Besides,
SA-CIAF yields the best performance (with the relative phone error
reduction of 10.05%) with the speaker code size of 1500.

Table 1. PERs (in %) of SA-CIAF on RNN-BLSTM (3*250) with
different speaker code sizes.

SC size baseline SA-CIAF
300

20.9

19.9
500 19.3

1000 19.2
1500 18.8
2000 19.0

It is doubt that whether the improved performance is due to the
increased model complexity in SA-CIAF. To clear this doubt out,
we’ve built another bigger SI RNN-BLSTM baseline with the size
of 3*326 (3 hidden layers, 326 BLSTM memory cells for each lay-
er), which has roughly the same number of model parameters (6.2
millions) as the one in SA-CIAF. The performance of this larger
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baseline is shown in Table 2, which is 20.5% in PER. This indicates
that the performance gain of SA-CIAF mainly comes from speaker
adaptation not from more model parameters.

Table 2. Comparison of PERs (in %) of two SI RNN-BLSTM base-
lines with SA-CIAF.

RNN-BLSTM baseline SA-CIAF
3*250 20.9 18.8
3*326 20.5 -

On the other hand, we try to decrease the number of parameters
due to large speaker code size by sharing the forward and backward
adaptation weights. As we can see from Table 3, the performance
loss in PER is not significant when the sharing reduces about half of
the adaptation parameters.

Table 3. Comparison of PERs (in %) of without sharing or with
sharing the forward and backward adaptation weights of SA-CIAF
(speaker code size = 1500).

without / with sharing baseline SA-CIAF
without sharing 20.9 18.8

with sharing 19.2

2) Comparison Between SA-CIAF and SA-GAF: In this part, we
first compare the adaptation performances of the joint adaptation of
the cell input and the three gate activation functions at speaker code
size of 500, 1000, 1500. The results are shown in Table 4, the speak-
er code size of 1500 still yields the best performance (PER in 19.1%)
in joint train of four kinds of adaptation weights, which is worse than
SA-CIFA (PER in 18.8%) and probably is due to the limited data of
each speaker for the learning of four times the number of parameters
in SA-CIAF.

Table 4. PERs (in %) of joint adaptation of the cell input and three
gate activation functions with different speaker code sizes.

SC size baseline joint adaptation
500

20.9
19.6

1000 19.4
1500 19.1

Secondly, experiments are conducted to compare the adaptation
contribution of the cell input and each gate activation function, while
keeping speaker code size at 1500. Results in Table 5 show that the
adaptation of cell input activation function is more effective in per-
formance than the adaptation of each gate activation function. This
is mainly due to the different functions between the cell input activa-
tion function and the gate activation functions for a BLSTM mem-
ory cell. The cell input activation function collects the information
of input and recurrent to decide the activation of current layer, but
the input gate, forget gate and output gate activation functions are
used for providing continuous analogues of read, reset and write op-
erations for the cells [28]. In other words, the cell input activation
function is a master controller, but the three gate activation functions
are secondary controllers, and these four activation functions control
the information flow synergistically. Hence, it’s reasonable that the
adaptation of cell input activation function can model more informa-
tion of the target speaker than the adaptation of each gate activation
function.

Table 5. PERs (in %) of speaker adaptation on cell input and three
gate activation functions respectively.

model activation function baseline PER
SA-CIAF cell input

20.9

18.8

SA-GAF
input gate 20.9
forget gate 20.5
output gate 20.5

5. CONCLUSION

In this paper, we’ve studied how to conduct effective speaker adap-
tation of RNN-BLSTM on TIMIT phone recognition task. Experi-
mental results have shown that the adaptation of RNN-BLSTM can
achieve over 10% relative reduction in PER compared to without
adaptation, which is better than the adaptation of DNN in [21] (about
7.4% relative error reduction). Then, it’s found that cell input acti-
vation function adaptation is more effective than the adaptation on
each gate activation function.

In the future, we will attempt to use a smaller speaker code size
to reduce the computation complexity. On the other hand, the log
Mel-filterbank features show better performance than the PLP fea-
tures in speech recognition to the best our knowledge. We will im-
plement the unsupervised speaker adaptation of RNN-BLSTM on
320-h Switchboard task by using the log Mel-filterbank features and
try to apply MMI criterion based sequence training to the speaker
adaptation of RNN-BLSTM.
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