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ABSTRACT
A speaker cluster-based speaker adaptive training (SAT)
method under deep neural network-hidden Markov model
(DNN-HMM) framework is presented in this paper. During
training, speakers that are acoustically adjacent to each other
are hierarchically clustered using an i-vector based distance
metric. DNNs with speaker dependent layers are then adap-
tively trained for each cluster of speakers. Before decoding
starts, an unseen speaker in test set is matched to the closest
speaker cluster through comparing i-vector based distances.
The previously trained DNN of the matched speaker clus-
ter is used for decoding utterances of the test speaker. The
performance of the proposed method on a large vocabulary
spontaneous speech recognition task is evaluated on a training
set of 1500 hours of speech, and a test set of 24 speakers with
1774 utterances. Compared to a speaker independent DNN
with a word error rate of 11.6%, a relative 6.8% improvement
in performance is obtained from the proposed method.

Index Terms— Deep Neural Network, Speaker Adaptive
Training, Speaker Clustering, i-vector

1. INTRODUCTION

Speaker variation is one of the important factors that af-
fect the performance of a practical large vocabulary sponta-
neous speech recognizer, researchers have spent a significant
amount of efforts in exploring effective adaptation methods.

During the era in which the Gaussian mixture model-
hidden Markov model (GMM-HMM) framework is predom-
inant for acoustic modeling, efforts on speaker adaptation
can be mainly categorized into two classes based on whether
information from training set is used or not. In the first class,
e.g. fMLLR [1] only on test set, speaker-specific feature
transformation is obtained through accumulating statistics
from first-pass decoding, then a second-pass decoding is
conducted on the transformed features. In the second class,
e.g. Speaker Adaptive Training (SAT) [2] using both training
and test sets, it tries to obtain a compact model by decou-
pling phonetic and speaker variation during training, and
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estimating a speaker-specific feature transformation during
decoding. It is possible for SAT to finish the decoding in
one pass, which improves the speed of decoding compared to
adaptation. There are two styles of speaker-specific feature
transformations: global style and regression class style. In
global style, all Gaussians share the same transformation. In
regression class style, a regression class tree which can statis-
tically determine the number of classes is used for clustering
Gaussians, and only Gaussians that are clustered together
share the same transformation. Furthermore, the transfor-
mations of different clusters can be interpolated in a cluster
adaptive training framework [3].

When the state-of-the-art acoustic modeling technology
evolved to DNN, researchers keep trying adaptation [4].
Other than millions of Gaussians to be adapted in the GMM-
HMM framework, there is only one DNN to be adapted.
Because of the change in model topology, the regression
class-style adaption is no longer valid. While the difficulty
of the adaptation for DNNs still remains. Because that there
may be too many parameters to be updated, regarding that
available speaker data for adaptation are usually not compar-
atively enough.

In the direction of unsupervised adaptation for DNN, re-
searchers tended to adapt only the affine transform plus bias
or only bias in one layer [4] [5], which still have millions or
a few thousands of parameters to be updated. To reduce the
number of parameters involved in adaptation, an SVD layer
can be inserted [6], or a linear transformation or a bias to the
input feature can be estimated [7], or one can only adapt acti-
vation functions of neurons in just one of the all layers, which
only have thousands of parameters [8].

In the direction of SAT for DNN, researchers are tak-
ing advantage of the availability of large amount of tran-
scribed data. i-vector based methods are commonly used. An
speaker-specific i-vector feature vector can be appended to
each frame of existing feature vector as an auxiliary feature
vector [9] [10]. Proper combination weights between original
feature vector and i-vector feature vector are supposed to be
obtained through back propagation (BP) algorithm during
DNN training. The i-vector-based approach can increase the
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computation load during decoding, not only because of the
time spent on i-vector extraction, but also because of the
increase in the size of both feature and model. It has been
discovered that reducing the durations of test utterances can
hurt the performance of a i-vector-based speaker verification
system [11]. In real-word scenario, when there is no sufficient
amount of available speech from a test speaker, it may be dif-
ficult for the calculated i-vector features to robustly represent
the characteristics of the speaker. There are also methods
which do not necessarily require i-vector features [12] [13].
For example, cluster adaptive training can be used to obtain
multiple affine transforms for a certain layer in DNN , then
to estimate speaker-specific interpolation coefficients to fuse
the affine transforms for an unseen testing speaker [13].

Inspired by the regression class tree in fMLLR and clus-
ter adaptive training methods, the proposed method clusters
speakers from training set that are close in i-vector feature
space together. The phonetic and speaker variation of speak-
ers in each cluster are modeled by a shared speaker indepen-
dent (SI) DNN plus a speaker cluster-specific layer. On test
set, it is assumed that an unseen speaker can be regarded as
similar to certain speakers which have appeared in the train-
ing set, i.e. close to certain speaker cluster in i-vector feature
space. The DNN of the speaker cluster whose i-vector is the
closest to the test speaker is used for decoding. No second
pass decoding is needed.

The details of the algorithm and the experimental results
of the proposed speaker cluster-based SAT-DNN training are
shown in the following sections.

2. SPEAKER CLUSTER-BASED SAT-DNN

The proposed speaker cluster-based SAT-DNN training and
decoding procedure is described in the following subsections.

2.1. SI-DNN Training
Using standard training recipe for a speaker independent (SI)
feed forward DNN. A DNN with a set of parameters, i.e. Λ,
is regarded as a function for transforming an input x to an
output y;

y = f(x;Λ) (1)

Suppose the DNN is composed of L layers from bottom to
top: Λ = {Λ1, · · · ,ΛL}. In the following, when it is men-
tioned that Λl is updated, it means that the affine transform
and bias of lth layer are updated through BP algorithm.

2.2. Speaker Clustering
Two persons may sound acoustically similar to each other in
certain speaking style which include accent, talking speed,
and so on. If a training set can be infinitely large, one unseen
speaker in a test set can always be matched to another speaker
in the training set who has a similar speaking style. The de-
coding of the utterances from this unseen speaker can benefit
from using the speaker dependent (SD) model of the matched
speaker which has already been trained. Whereas, due to the

limitation on the size of training sets, and the limitation on the
allowable time to search for matching speakers during decod-
ing, it is not quite practical to train a set of SD models for each
speakers appeared in the training set. It is natural to consider
clustering the speakers of similar speaking style together.

To cluster speakers, the i-vector has been used and been
proved effective [15]. In this paper, define the distance be-
tween speaker Si and Sj as:

D(Si||Sj) = 〈iSi , iSj 〉 (2)

where 〈·, ·〉 denotes inner product, iSi and iSj denote the nor-
malized i-vectors obtained from all available data of speaker
Si and Sj , respectively. After defining the distance, Ward’s
method can be used as the criterion to cluster the speakers
into several clusters on the training set [15]. i-vectors are then
calculated for each cluster Ck, i.e. iCk , using all the data from
speakers in the cluster.

Usually, a training set can have hundreds or thousands of
speakers. This paper empirically tested the effect of the num-
ber of clusters on the performance of the DNN-HMM system.
Analysis results will be shown in the experimental section.

2.3. SAT-DNN Training
Select one layer from the SI-DNN as the SD layer, and mark
layers other than the SD layer as other SI layers. Initially,
duplicate N copies of the previously trained SI-DNN for
N speaker clusters. Let N other SI layers in the DNN, i.e.
ΛC
SI OTHER, C = 1, · · · , N , share the same set of parameters,

i.e. ΛSI OTHER. The N SD layers in the DNN, i.e. ΛC
SD,

C = 1, · · · , N , do not share parameters. Now the output can
be calculated as:

y = f(x; {ΛSI OTHER,Λ
C
SD}), if x ∈ C (3)

For each speaker cluster, run BP algorithm to update only the
SD layer while keeping other SI layers unchanged, which is
performed on only the training examples from the speakers
in the cluster. Then keep the SD layer of each speaker clus-
ter unchanged, update the shared parameters of other SI lay-
ers using the training examples from all speakers. This train-
ing process can be repeated for iterations, until it converges,
i.e. the increase in the value of cross entropy-based objective
function falls below an empirically set threshold.

2.4. SAT-DNN Decoding
After finishing the training procedure described in the previ-
ous subsection, during decoding time, an unseen speaker S is
matched to the speaker cluster C∗ as follows:

C∗ = argmax
C

< iS , iC > (4)

where iS denotes the i-vector of the speaker S, which
can be calculated on all or only one of her/his utterances,
iC denotes the i-vector of speaker cluster C. The SD-DNN
{ΛSI OTHER,Λ

C∗

SD } is selected for decoding.
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This paper uses a similar iterative training scheme for the
SD and SI layers in DNN as Ochiai et al. [16]. This paper
trains SAT models on training, while Ochiai et al. trained SAT
models on part of the test set in a cross validation fashion. In-
stead of choosing one transform from a set of speaker-specific
affine transforms to form a SD-DNN as proposed in this pa-
per, Ochiai et al. unsupervisedly trained a SD layer contained
only one affine transform for the test speaker. This paper per-
forms only one pass decoding, while Ochiai et al. ran extra
rounds of adaptation to the SD layer before running the final
pass of decoding.

Tan et al. [13] retained cluster adaptive training (CAT)
layer and SI layers in final trained DNN. The CAT layer is
composed of a set of canonical affine transforms plus bias
which are learned through BP algorithm, which is similar to
multiple speaker-specific affine transforms plus bias in SD
layer in this paper. Tan et al. ran first pass decoding us-
ing an SI-DNN to obtain state-level alignments, then esti-
mated speaker-specific interpolation coefficients to combine
the canonical transforms for the CAT layer before starting
second pass decoding. This paper selects only one among
all speaker-cluster-specific transforms to form the final SD-
DNN. The method proposed in this paper does not require
two pass decoding. Interestingly, in Section 2.2 of Tan et
al.’s work, the concept of speaker clustering was mentioned
as a possible way for initializing canonical transforms in CAT
layer, although the direction was not explored further.

Zhang et al. [14] explored i-vector based training data
clustering in a GMM-HMM framework, no adaptation was
involved.

3. EXPERIMENTS

The proposed speaker cluster-based SAT-DNN-HMM system
is evaluated on an English spontaneous speech recognition
task. The training set has two portions. The first portion is
a general training set, which consists of 1400 hrs of WSJ-
SI284, Switchboard, half of the Fisher corpora. The second
portion is an in-domain training set, which consists of 35 hrs
of self-collected in-domain data from 277 speakers. The de-
velopment set contains 2.0 hrs of recordings, 22 speakers with
1288 in-domain utterances, which is only used for tuning lan-
guage model weights during decoding. The test set contains
3.6 hrs of recordings, 24 speakers with 1774 in-domain utter-
ances. The averaged number of word in each utterance is 15.
The sampling rate of all speech data is 8 kHz.

In this paper, C1 to C12 of MFCCs plus logarithm en-
ergy feature are used as static feature. Filterbank feature
works slightly worse. The static feature with its first and
seconder order derivatives are stacked together to form a
39 dimensional feature. Adjacent 9 frames of static plus
dynamic features are stacked together to form a 351 di-
mensional long-span feature. Then LDA+MLLT is used to
reduced its dimension to 40. A GMM-HMM system which
uses the LDA+MLLTed features and SAT and fMLLR adap-

Table 1. WERs (%) of different DNNs on test set. The gen-
eral SI-DNN is trained on the general training set. The in-
domain SI-DNN is trained on additional in-domain data us-
ing the general SI-DNN as initial model. The proposed SAT-
DNN in this paper is adaptively trained on in-domain data
using the in-domain SI-DNN as initial model.

General SI-DNN 13.67
In-domain SI-DNN 11.62

In-domain SAT-DNN 10.83

tation methods is firstly trained to obtain the alignment from
training data for the subsequent DNN training. The number
of senones is 8891. 3-gram language model is trained on the
text of the general training set, then adapted according to the
text of the in-domain training set.

The opensource toolkit for speech recognition and pro-
cessing, Kaldi [17], is used for both GMM and HMM train-
ing. The features used in DNN are obtained by stacking adja-
cent 9 frames LDA+MLLTed features together, i.e. a 360 di-
mensional feature. For hidden layers, the input and output di-
mensions of p-norm component [18] are set to 2000 and 400,
respectively. p is set to 2. Generalized maxout network [18]
is used as the activation function. ReLU activation function
works slightly worse. Cross entropy-based objective function
is used.

The general SI-DNN with 7 layers is trained purely on the
general training set first. During training, the initial and final
learning rates are set to 0.02 and 0.002, respectively. The
minibatch size is set to 512. Data parallelization is used to
accelerate the training speed. Note that when the results of
decoding using the SD-DNN are presented in this paper, no
afterward unsupervised adaption is performed because no sig-
nificant further reduction in WER is observed.

For speaker clustering, the dimension of i-vector is set to
100. For GMM mean supervector calculation, a full covari-
ance GMM with 512 Gaussians is trained on the in-domain
training set. The extracted i-vector is normalized to unity
length. Detailed speaker clustering analysis results will be
shown in the following paragraphs.

For in-domain SAT-DNN, the code of Kaldi toolkit has
been modified to perform the customized training proposed
in this paper. The number of iteration is set to 10. The learn-
ing rate is set to a constant value, 0.1. The locations of SD
layers is set to the first layer. The lowest WER of SAT-DNN
is achieved under this configuration. It is also observed that
after the first iteration, the fluctuation in WERs across itera-
tions is less than 0.05%. A comparison of the WERs when
using the general SI-DNN, the in-domain SI-DNN, and the
in-domain SAT-DNN for decoding on the test set is shown in
Table 1. The proposed SAT-DNN yields a WER of 10.83%,
which results in a 6.8% relative reduction compared to the
WER of in-domain SI-DNN.

As shown in Table 2, the number of speaker clusters (5,
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Table 2. WERs (%) of when changing number of speakers in
SAT-DNN on the test set.‘Cluster=i’ denotes that the number
of speaker cluster in the SAT-DNN is set to i. When chang-
ing the location of SD layer in the SAT-DNN, the WER also
changes accordingly.

SD Layer’s Location
1st 4th 7th

SAT-DNN, Cluster=5 11.00 10.95 10.97
Cluster=10 10.83 10.85 10.92
Cluster=20 11.01 10.99 11.12

Table 3. Speaker clustering results on the in-domain train-
ing set with 277 speakers in total. ‘Cluster=i’ denotes that
the number of speaker cluster in the SAT-DNN is set to
i. min/max/avg denotes the minimum/maximum/averaged
number of speakers in a cluster, respectively.

The Number of Speakers in Clusters
min max avg

Cluster = 5 23 126 55.4
Cluster = 10 14 57 27.7
Cluster = 20 7 23 13.9

10, or 20) and the location of SD layer (1st, 4th, or 7th) can
both affect the final WER. When the number of clusters is
set to 10, and the SD layer is set to the first layer, the best
performance is achieved. When fixing the number of clusters,
different locations of SD layer do not affect WER much (less
than 0.1 %). It can also been seen that the WERs fluctuate in
a small range when these parameters change.

When the number of speaker clusters increases, it may
cause the amount of speaker data for adaption to decrease, re-
sulting in an overfit SD layer. When the number of speaker
clusters decreases, the speaker variation from different speak-
ers may not be well modeled because there may be too many
speakers clustered into a same cluster.

The speaker clustering results on the in-domain training
set are shown in Table 3. It can be seen that when the number
of clusters changes, there is no cluster with only one or two
speakers appeared, which may avoid the overfitting problem.
Take the 10 cluster case for example, the minimum number of
speakers in a cluster is 14, which contains 722 utterances with
a total duration of 1.4 hours of speech. Compared to unsu-
pervised adaptation scenarios, the speaker cluster-based SAT
can have more data to adapt an SD layer, even if the number
of speakers in that cluster is small. Certain clusters can end
up with a large amount of speakers after clustering, though.
For example, under 10 cluster case, the maximum number of
speakers in a cluster reached 57 speakers, which means the
cluster is associated with 7 hours speaker adaptation data.

The performance of the speaker clusters is also analyzed.
A 5-fold cross validation set is created on the in-domain train-
ing set. For a speaker in a validation set, if it is matched to

a speaker cluster in the corresponding training set according
to Eq. 4, and the speaker cluster contains this speaker, it is
considered as a successful speaker cluster matching. An ac-
curacy metric, Speaker Cluster Matching Accuracy (SCMA),
on a validation set is defined as

SCMA =
# of successfully matched speakers

# of total speakers
× 100% (5)

Note that when a speaker is matched, it does not have to
know which speaker in that matched cluster it is matched to.
Speaker cluster matching is different from speaker recogni-
tion.

When there are 10 speaker clusters in training set, the av-
eraged SCMAs on all validation sets is 83.5%. SCMA can-
not be calculated on the test set, for the speakers are unseen
speakers. Although the SCMA analysis is not available for
speakers from a test set, one can still imagine that when a
training set is infinitely large in size, i.e., has a full coverage of
all available speakers, the speakers on a test set can be viewed
as seen speakers. The higher SCMA is, the more likely the
test speaker can be matched to the correct speaker cluster. Or,
it can be said that a test speaker is more likely to use a cor-
rectly matched SD model in decoding, which will likely result
in a reduction in WER. Therefore, improving speaker cluster
matching accuracy might help to reduce WER when the size
of the training set is large.

In this paper, unsupervised adaptation to the SD layer is
also performed after first pass decoding. No significant fur-
ther reduction in WER is observed in the following second
pass decoding when the model used in first pass decoding is
the in-domain SAT-DNN. One possible explanation is that the
data from 70 untranscribed utterances of each test speaker are
not enough to reliably further adapt the 8×105 parameters
in the affine transform plus bias, or 2000 parameters in the
bias, in the SD layer. The reason why the SAT-DNN works
might be because that the proposed model can take advantage
of large amount of transcribed data to train speaker cluster-
specific models. And also the speaker cluster matching is ef-
fective in selecting the proper matched SD model, when an
adequate amount of clusters is chosen, and a sufficient amount
of test speaker data is available for extracting reliable i-vector
features.

4. CONCLUSIONS

In this paper, a speaker cluster-based SAT-DNN framework
is proposed and proven. i-vector based distance metric is
used to cluster the speakers in the training set together. An
SAT-DNN with multiple canonical transforms in SD layer is
trained on the speaker clusters. An unseen speaker in test set
is matched to the closest speaker cluster through comparing
i-vector based distances. The proposed method finishes the
decoding in one pass using the SD-DNN associated with the
matched speaker cluster. A relative 6.8% reduction in WER
is observed compared to an SI-DNN model.
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