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ABSTRACT

The paper proposes an approach to perform speaker adaptive training
(SAT) in deep neural networks using a two-stage DNN. The first-
stage DNN extracts speaker dependent bottleneck(SDBN) features
by updating the weights of the BN layer with speaker specific data.
Using the SDBN features, a second-stage DNN is trained in the SAT
framework. Choosing the BN layer as the speaker dependent layer
instead of one of the hidden layers reduces the number of parameters
to be tuned using speaker specific data. Experiments are presented
on the Aurora4 task, where the input features are normalised with
constrained maximum likelihood linear regression (CMLLR) and
speaker information is appended in the form of D-vectors. Follow-
ing an unsupervised adaptation of BN layer, the proposed approach
provides a relative gain of 8.6% and 8.9% WER on top of DNNs
trained with FBANK features appended with and without D-vectors
respectively. A relative gain of 10.3% WER is observed when ap-
plied on top of DNNs trained with CMLLR transformed FBANK
features, but the gain in performance saturated when combined with
D-vectors. It is observed that supervised adaptation with as little as
one minute of audio from a specific speaker improved the perfor-
mance when compared with the baseline.

Index Terms— Speaker adaptive training, speaker normalisa-
tion, deep neural networks, speaker dependent bottleneck features,
automatic speech recognition.

1. INTRODUCTION

Speaker adaptation for DNNs is an active area of research and is
shown to improve the performance of automatic speech recognition
(ASR). A wide range of approaches have been proposed in litera-
ture, that can be broadly classified into two main categories based
on where the speaker variability is normalised in DNNs. The nor-
malisation can be applied either by transforming the feature space
before training the DNN or modifying the parameters of an already
trained DNN using data from a specific speaker.

Transforming the feature space before training the DNN, us-
ing feature transformations like vocal tract length normalisation
(VTLN) [1] and constrained maximum likelihood linear regression
(CMLLR) [2], have shown to improve the DNN performance. Ap-
pending speaker information to the input features, in the form of
I-vector [3], D-vectors [4], vectorised CMLLR transforms [5] or us-
ing speaker codes [6, 7], to make the DNN aware of speaker specific
changes have shown to improve the DNN performance. All these
feature space transformations are applied before training the DNN.
For approaches that tune the parameters of the DNN, the primary
challenge is to tune the network parameters with limited amount of
training data from a specific speaker. One of the ideas is to esti-
mate speaker specific transformation by tuning weights of a specific
layer, while the rest of the layers are kept fixed. These layers can

be positioned either towards the front [8, 9], middle [9] or towards
the output layer [10]. Other approaches looked at minimising the
parameters by performing singular value decomposition (SVD) over
DNN weights and estimate speaker dependent (SD) transformation
inserted between the decomposed weight matrices [11]. In learning
hidden unit contributions (LHUC), an SD vector is attached to every
hidden layer learnt from the test speaker, which are applied to DNN
hidden units with element wise multiplication [12]. Regularisation
of the training with Kullback-Leibler (KL) divergence have also
been studied to reduce over-fitting to the data [13] .

Compared with the approaches proposed for speaker adaptation
in DNNs, there have been very few attempts to perform speaker
adaptive training (SAT) for hybrid DNN-HMM systems, which is
a well established approach in GMM-HMM systems. SAT performs
speaker adaptation both in training and recognition [14, 15]. Train-
ing DNNs using features transformed with VTLN, CMLLR or ap-
pending speaker information in the form of speaker codes can be
thought as training DNNs in the SAT framework. In [16], SAT train-
ing in DNNs is performed by allocating speaker dependent (SD) lay-
ers and tuning the weights of these layers using data from a specific
speaker. Once the SD layers are tuned, the DNN is retrained with
the SD layers to obtain the SAT-DNN model. In [17], SAT train-
ing is performed by linearly shifting the input features to a speaker
normalised space before training the DNN. The linear shifts are es-
timated by transforming the I-vectors using a DNN.

In this paper, we propose an approach to perform speaker adap-
tive training (SAT) in DNNs for hybrid systems using a two-stage
DNN architecture as proposed in [18]. The first-stage DNN is used
for extracting bottleneck (BN) features, where speaker normalisa-
tion is applied by tuning the weights of the BN layer [19] to derive
speaker dependent bottleneck (SDBN) feature. These speaker nor-
malised features are used for training the second-stage DNN in the
SAT framework. Experiments are conducted on the Aurora4 task,
where the input features are normalised with CMLLR and appended
with speaker information in the form of D-vectors. Following an
un-supervised adaptation of the BN layer, it will be shown that the
proposed approach provides a relative gain of 8.6% WER and 8.9%
WER on top of DNNs trained with FBANK features appended with
and without D-vectors respectively. The proposed approach when
applied on top of DNNs trained with CMLLR transformed FBANK
features provides a relative gain of 10.3% WER. The performance
seems to saturate when CMLLR transformed FBANK features are
combined with D-vectors. It will be shown that supervised adap-
tation of the BN layer with one minute of audio from a specific
speaker provides improvement in performance when compared with
the baseline.

The rest of the paper is organised as follows: first, the proposed
approach to perform speaker adaptive training in DNNs is presented
and our motivations for using a two-stage DNN framework, followed
by the experimental setup, results and discussion. The performance
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Fig. 1. Two stage DNN architecture used in the proposed scheme for
speaker adaptive training.

of the proposed approach is studied both in supervised and unsuper-
vised adaptation and finally present our conclusion and references.

2. SPEAKER ADAPTIVE TRAINING IN DNNS

Speaker adaptive training (SAT) is a well established approach to
improve the acoustic model in GMM-HMM systems, where speaker
adaptation is applied both during training and recognition. In order
to perform speaker adaptive training in a hybrid DNN, a two-stage
DNN architecture [18] as shown in Fig. 1 is used in the proposed
approach. The first-stage DNN acts as a feature extractor, where
speaker normalisation in performed on the bottleneck (BN) features
by updating the weights of the bottleneck layer with data from a spe-
cific speaker. These features are in turn used for training the second-
stage DNN to perform SAT.

Transforming the input features with CMLLR or appending
speaker information in the form of I-vectors, D-vectors or speaker
codes before training the DNNs already fall into the framework
of speaker adaptive training. The proposed framework for SAT in
DNNs not only allows us to perform similar speaker normalisation’s
on the front-end, but also facilitates us to rapidly adapt the param-
eters of the DNN using data from a specific speaker. Having such
a framework help us integrate front-end normalisation with speaker
adaptation approaches proposed to directly adapt the DNN model
parameters.

The first-stage DNN is a bottleneck feature extractor (BN-DNN)
trained using monophone targets. Speaker dependent bottleneck
(SDBN) features are generated after tuning only the weights of the
bottleneck layer with data from a specific speaker and keeping the
weights in the rest to the layers fixed as proposed in [19]. Since
the BN layer is considerably smaller in size when compared with
the rest of the hidden layers, the number of parameters required for
tuning with limited amount of training data from a specific speaker
is also reduced. So, each speaker in the training or the recognition
set will have a SDBN layer estimated using data from that speaker.

During training, once the SDBN layers are estimated for each
speaker, the SDBN features are used for training the second-stage
DNN to obtain the SAT-DNN model. During recognition, the SBDN

layer is updated in an unsupervised approach using the previous
pass ASR transcription. The reason for using monophone targets
for training the BN-DNN is to make the SDBN layer training robust
to transcription errors during recognition and alleviate the problem
of data sparsity. A recent study looks at tying the output states by
adding a soft-max layer of context independent states on top of the
context dependent states to reduce the problem of data sparsity for
updating the network parameters [20]. Mapping the triphone targets
onto monophones can be interpreted as state tying and helps alle-
viate the problem of data sparsity. Since the BN-DNN is primarily
employed only to extract BN features, it does not influence the per-
formance of SAT-DNN. The number of targets in the hidden layers
can also be reduced in order to reduce the number of parameter re-
quired for tuning using data from a specific speaker.

The summary of steps in both training and recognition for the
proposed SAT in DNNs are as follows:
Training
• Train the BN-DNN using FBANK features and monophone tar-
gets. Optionally, the input features can be transformed with CM-
LLR and appended with speaker information in the form of speaker
codes.
• Using the monophone alignments on the training data, tune the
weights of the BN layer to extract SDBN features for each speaker.
• Using the SDBN features, train the second-stage DNN to obtain in
the SAT-DNN. The BN features are spliced with 5 frames on either
side for training the SAT-DNN.
Recognition
• Perform a first pass recognition using the network trained using
FBANK features.
• Obtain the monophone alignments using the first-pass transcrip-
tion and estimate the SDBN features for each of the test speaker by
updating the weights of the BN layer.
• Using these SDBN features, perform recognition using the trained
SAT-DNN model.

2.1. Relation to previous work

The proposed framework closely resembles the architecture pro-
posed in [16], where speaker dependent (SD) layer is chosen to
be one of the hidden layer in the DNN. Once the SD layers are
trained using data from a specific speaker, the network is retrained
to obtain the SAT-DNN. The SAT model seem to perform better
when the SD layers were positioned in the middle of the network
and regularisation is performed to avoid over-fitting. The SD layers
in recognition are updated in an supervised approach, where the
test data is divided into four sub-groups and recognition results are
obtained in the four-times cross-validation scheme. In the proposed
framework, the SD layer is chosen to be the BN layer instead of
a hidden layer and is updated using monophone targets. Since the
BN layer is much smaller in dimension when compared with the
hidden layer, the number of parameter required for updating are also
less. The SD layer is updated independently of the SAT-DNN rather
than being part of the same network. More over the SD layers in
recognition are updated in an unsupervised approach using previous
pass ASR transcripts.

The proposed framework also has resemblance with the archi-
tecture proposed in [17], where I-vectors have been transformed to
linear shifts using a DNN to perform speaker normalisation on the in-
put features before training the SAT-DNN. The proposed framework
also employs a first-stage DNN to process the input features to ob-
tain speaker dependent bottleneck features that are used for training
a second-stage DNN. In both the frameworks a DNN is employed to
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Table 1. Comparing the performance of conventional 7 layer DNN
with two-stage DNN architecture.

%WER Conventional Two-stage
FBANK 14.6 14.5
+ D-vec 13.9 13.9
+ CMLLR 12.6 12.6
+CMLLR + D-vec 12.3 11.9

perform speaker normalisation before training the SAT DNN.

3. EXPERIMENTS AND RESULTS

The ASR experiments in this paper are reported on the Aurora4 task.
We will present a brief description of the corpus and then present the
results on the proposed approach to perform SAT in DNNs.

3.1. Corpus description

The database is derived from WSJ corpus, in which additive noise
and convolution distortion have been artificially added. The database
is provided with clean and multi-condition training data having 7138
utterances from 83 speakers. The clean data is recorded with a pri-
mary Sennheiser microphone, where as the multi-condition database
has data recorded with a primary as well as a secondary microphone
which includes convolutive distortions. In all the experiments, the
models are trained with multi-condition data, which includes the
clean data as well as data having additive noise from six noise con-
ditions, i.e. airport, babble, car, restaurant, street and train station.
The test data consists of 330 utterances from 8 speakers, recorded
by two different microphones, thus leading to 14 different test sets.
We assume a well trained GMM-HMM system is already existing
and will be presenting results of the DNN systems only . First we
will compare the performance of a conventionally trained DNN that
only has hidden layers with the two-stage DNN architecture used to
perform the proposed SAT approach in the next section.

3.2. Conventional and two-stage DNN

The baseline DNN is trained using the conventional DNN architec-
ture with 7 hidden layers having 2048 targets each. The input to the
DNN uses 40 dimensional Mel filter-bank (FBANK) features spliced
with 5 frames on either side to form a 440 dimensional feature vec-
tor as input. In the two-stage DNN, the BN-DNN uses 3 hidden
layer with 512 targets each and trained using monophones as targets
on the output layer. A bottleneck feature of 75 dimensions is ex-
tracted for each frame and spliced with 5 frames on either side to
form a 825 dimension feature vector, which are used for training the
second-stage DNN having 3 hidden layers with 2048 targets each.
The output layer in both conventional and two-stage DNNs has 2281
targets, that are derived using alignments from the SAT GMM-HMM
model. The DNNs in all cases are initialised with RBM pre-training
and optimised using cross-entropy criterion. All the experiments are
performed using the KALDI toolkit [21].

Speaker normalisation is performed on the input features
by transforming the FBANK features with CMLLR transforms
(CMLLR-FBANK) and appending speaker information in the form
of D-vectors [4]. CMLLR transforms are estimated while training
the SAT GMM-HMM model. D-vectors are obtained by training a
bottleneck DNN with speaker labels as targets in the output layer.
In our experiments, the D-vector is obtained by averaging the bot-
tleneck features over an utterance and then appending the constant

Table 2. Results comparing the stage at which D-vectors are ap-
pended for performing speaker normalisation in the two-stage DNN
architecture.

%WER FBANK BN
+ D-vec 13.9 13.8
+ CMLLR + D-vec 11.9 12.0

vector to the filter-bank features in an utterance. This means that
the speaker representation for the same speaker is allowed to change
across utterances from the same speaker.

Baseline results comparing the conventional and two-stage DNN
architectures are presented in Table 1. Unless specified, the results
in the tables always report the average %WER over all the 14 test
sets. The table shows how the performance progresses by perform-
ing speaker normalisation on the input features either by transform-
ing with CMLLR or appending D-vectors (D-vec) or performing
both the operations together. Both CMLLR and D-vectors seem to
improve the ASR performance and the best performance is achieved
when both the operations are performed together. The two-stage
DNN seem to perform comparably and the results are inline with
the performance observed in conventional DNN. It is interesting to
observe that transforming the features with CMLLR or appending D-
vectors, the BN features in the two-stage DNN seem to be speaker
normalised and improve the ASR performance. This results indicate
that BN-DNN can be used for integrating information from multiple
sources and can facilitate to combine feature transformation on the
front-end with approaches to tune the network parameters to nor-
malise speaker variability. In the rest of the paper, the results of
two-stage DNN are used as baseline for comparing the performance.

3.3. Appending the D-vector

D-vectors are extracted independent of the input features used for
training the two-stage DNN and can be appended either at the input
along with filter-bank features for training the BN-DNN or appended
to the BN features before training the second-stage DNN. The moti-
vation for this experiment is to understand which combination seem
to be effective for performing speaker adaptation in the two-stage
architecture. The results comparing the performance in both the
configurations using D-vectors are presented in Table 2. One can
observe that D-vectors seem to provide similar gains in performance
either when they are appended to the FBANK features before ex-
tracting the BN features or when appended with the BN features for
training the second-stage DNN. In all cases CMLLR is applied on
the FBANK features. There is no gain in performance when they
are appended both to the filter-bank features as well as the BN fea-
tures. In all our experiments, D-vectors are always appended with
the filter-bank features and the second-stage DNN is trained only
using the BN features.

3.4. Speaker adaptive training

This section presents the results of the proposed approach to train-
ing the SAT-DNN. Speaker dependent bottleneck (SDBN) features
are extracted after tuning the weights of the BN layer with data from
a target speaker. During training the SDBN features are used for
training the SAT-DNN model. During recognition, the weights of
the BN layer are updated in an unsupervised approach using first-
pass transcriptions and the SDBN features are used for recognition
using the SAT-DNN model. Table 3 presents the result using the pro-
posed training approach. The table presents how the performance of
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Table 3. Results of the proposed SAT-DNN using SDBN features
extracted from BN-DNN having 512 targets in the hidden layers.

%WER Baseline + SAT-DNN %WERR
FBANK 14.5 13.2 8.9
+ D-vec 13.9 12.7 8.6
+ CMLLR 12.6 11.3 10.3
+ CMLLR + D-vec 11.9 11.2 5.9

Table 4. Results of the proposed SAT-DNN using SDBN features
extracted from BN-DNN having 256 targets in the hidden layers.

%WER Baseline + SAT-DNN %WERR
FBANK 15.6 14.4 7.7
+ D-vec 14.4 13.7 4.9
+ CMLLR 13.1 11.9 9.2
+ CMLLR + D-vec 12.0 11.4 5.0

SAT-DNN changes by applying front-end normalisation using CM-
LLR and D-vectors. We make the following observations:
• Using FBANK features, without any normalisation of the front-
end, the proposed approach provides a relative gain of 8.9% in terms
if word-error rate (WER) when compared with the baseline system.
• One can observe that as the baseline performance improves, the
performance of SAT-DNN also gradually increases. Since an unsu-
pervised approach is followed to update of the BN layer, improved
transcriptions will also improve the SDBN features as there are less
transcription errors.
• The biggest gain in performance is achieved when SAT is per-
formed on top of DNN trained with CMLLR features, where we
have a relative gain of 10.3% in WER.
• The performance seem to saturate and we notice very little gains
in performance when SAT training is performed on top of DNNs
trained with CMLLR features when combined with D-vectors.

3.5. Reducing the size of hidden layer in BN-DNN

Here we study the influence on reducing the number of targets in
the hidden layers used for extracting the bottleneck features. The
main motivation is to see if we can reduce the number of parame-
ters for unsupervised adaptation of the BN layer without influencing
the recognition performance. We perform experiments using hid-
den layer having 256 targets. The results are presented in Table 4.
Comparing with the results using BN-DNN using 512 targets (in Ta-
ble 3), one can observe that the baseline performance degrades and
similarly the performance of SAT-DNN. An similar picture in terms
of relative WER gains can be observed when SAT is performed on
top of CMLLR-FBANK features. It is interesting to observe that us-
ing a smaller hidden layer with 256 targets in BN-DNN still could
achieve a comparable performance when compared with a BN-DNN
using a hidden layer with 512 targets. We have the impression that
using larger size of hidden layers might help in extracting better BN
features.

3.6. Supervised adaptation

The final set of experiments look at performing supervised adap-
tation of the BN layer using true transcripts available for the test
speaker. The experiments are done on the BN-DNN having 512 tar-
gets in the hidden layers. Each speaker has 40 utterances and cor-
responds to having 5 minutes of audio data approximately. The BN

Table 5. Results comparing the performance of supervised adapta-
tion using variable number of utterances.

%WER +10 +20 +30 +40
FBANK 13.4 12.7 12.3 11.9
+ D-vec 13.1 12.1 11.9 11.6
+ CMLLR 11.5 11.1 10.8 10.4
+ CMLLR + D-vec 11.4 10.8 10.5 10.4

layer weights are updated using 10, 20, 30 and all of the utterances
available from the test speaker to see how the performance changes.
Please note that the CMLLR transforms in these experiments are
still estimated in the unsupervised approach and have not been re-
estimated. The results are presented in Table 5.

One can notice that the performance improves as the amount of
data from a specific speaker increases as expected. It is interesting
to note that less amount of adaptation data is required to achieve
similar or better performance when the data is already normalised
using CMLLR and D-vectors than when compared with only using
FBANK features. This might be because of a better acoustic model
trained in the SAT framework. Comparing with the results presented
in Table 3, as little as 10 utterances from each speaker can already
improve the performance over the baseline, which correspond to ap-
proximately one minute of data from each speaker. One can also no-
tice that performing SAT on top of CMLLR-FBANK features when
combined with D-vectors seem to saturate and have a performance
similar to only using CMLLR features. This might explain the be-
haviour observed in the unsupervised adaptation experiments pre-
sented in Table 3.

4. CONCLUSION

The paper proposed an approach to perform speaker adaptive train-
ing in DNNs using a two-stage DNN architecture. The first-stage
DNN performed BN feature extraction to derive speaker dependent
bottleneck features by updating the weights of the BN layer with
speaker specific data. Using the speaker normalised bottleneck fea-
tures, the second-stage DNN is trained in the SAT framework. We
investigated the proposed approach to perform SAT in combination
with transforming the input features with CMLLR and appending
speaker information in the form of D-vectors. We showed that the
two-stage DNN architecture has a performance similar to conven-
tional DNN having 7 hidden layers. We also showed that the two-
stage DNN had similar performance when the D-vectors are either
appended to the FBANK features or appended to the BN features
before training the second stage DNN.

The proposed SAT training provided a relative gain of 8.9%
WER when applied on top of DNN trained using FBANK features
and a relative gain of 10.3% WER when applied on top of DNN
trained using CMLLR-FBANK features respectively. Though the
proposed SAT training provided a relative gain of 8.6% WER on top
of DNN trained with FBANK features and combined with D-vectors,
the performance seem to saturate when SAT training is applied on
top of DNN trained using CMLLR-FBANK features and combined
with D-vectors. A behaviour also noticed when SAT training was ap-
plied in supervised adaptation on the test speakers. Supervised adap-
tation experiments showed that, updating the weights of the BN layer
with as little as 10 utterances (correspond to approx. one minute of
audio) can already improve the performance over the baseline. This
suggests that the proposed approach can be used to rapidly adapt the
DNN parameters to the test speaker with very little adaptation data.
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