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ABSTRACT

Previously we demonstrated that speaker adaptation of acoustic
models (AM) can provide significant improvement in the accuracy
of large-scale speech recognition systems. In this work we discuss
numerous challenges in scaling speaker adaptation to millions of
speakers, where the size of speaker-dependent (SD) parameters is
a critical challenge. Subsequently, we formulate an intermediate-
layer adaptation framework for adaptation, upon which we build a
non-negative adaptation for a very sparse set of non-negative SD
parameters. We further improve this work with, (a) non-negative
adaptation with a small-positive threshold, (b) setting small-positive
weights in an already trained non-negative model to zero. We also
discuss effective methods to store the non-negative SD parameters.
We show that our methods reduce the SD parameters from 86KB
for our previous best adaptation approach to 8.8KB, thus about
90% relative reduction in the size of SD parameters, and still re-
tain 10+% word-error-rate-relative (WERR) gain over the baseline
speaker-independent (SI) model.

Index Terms— Non-negativity, DNN, Speaker Adaptation,
Digital Assistant, Personalization

1. INTRODUCTION

Our recent work [1] leveraged recent advances in deep neural net-
works (DNNs) and demonstrated that AM personalization using
unsupervised adaptation techniques can provide 10+% word-error-
rate-relative (WERR) gain for large scale speech recognition sys-
tems. Although recent advances in the strong modeling capability
of DNNs [2, 3] have significantly improved the performance of SI
models, adaptation techniques still provide a strong additional value
to automatic speech recognition (ASR) customers. Similarly we ex-
pect adaptation to provide strong gains on top of the next generation
deep learning techniques and thus continue to be an active research
and development topic.

The adaptation approaches for DNNs can be classified in the
following broad areas, (1) affine transformation - [4] applies affine
transformation on the top layer activations, (2) adapting multiple lay-
ers - [5] leverages singular value decomposition (SVD) to achieve
low-footprint adaptation, [6] learns speaker-specific hidden contri-
butions, (3) subspace approaches - we construct an adapted DNN
from analysis on different subspace models, see examples in prin-
cipal component analysis [7], i-vectors [8, 9], and GMM fMLLR
based approach in [10], (4) speaker adaptive training (SAT) in [11].
Most of the adaptation approaches leverage conservative training
methods, where we constrain SD parameters to be in close vicinity
of the SI model [12][13].

In this work in Sec. 2, we discuss a number of benefits and new
challenges in successfully deploying speaker adaptation for millions
of speakers. Some of the challenges arise from, (a) size of the SD
parameters, (b) limited adaptation data, (c) unsupervised nature of
data - we use hypotheses from decoding against SI model as approx-
imate transcriptions, (d) potential regression for shared devices, (e)
discarding corrupted or noisy data, (f) effectively testing models, (g)
model adaptation throughput, (h) accuracy gains. The size of SD pa-
rameters is a critical challenge; a smaller model assists almost all of
above challenges, and thus a major focus of this work.

In Sec. 3, we present an intermediate-layer adaptation frame-
work. This is motivated to impact both the seen and unseen senones
in the adaptation data, and also provides a small set of the SD param-
eters. Later in Sec. 4, we build a non-negative [14, 15] adaptation
approach to achieve a very sparse set of SD parameters. We further
improve this work with, (a) non-negative adaptation with a small-
positive threshold, (b) setting small-positive weights in an already
trained non-negative model to zero. We provide results in terms of,
(a) effective non-zero percent of SD parameters, (b) impact on WER,
and show that our approach yields a substantially smaller SD model.
Next, we discuss three methods to effectively store the non-negative
SD parameters. Finally we show that our methods reduce the SD pa-
rameters size from 86KB for our previous best adaptation approach
to 8.8KB. This is an order of magnitude reduction in the SD param-
eters while still nearly retaining the WERR gain over the SI model.
Sec. 5 concludes this study.

2. MOTIVATION AND CHALLENGES FOR
PERSONALIZATION

Fig. 1 provides a brief outline of a typical speech recognition sys-
tem. There the key modeling components are, (1) acoustic model
(AM) represents a map between acoustic features and speech states,
(2) pronunciation model represents words into speech states, (3) lan-
guage model statistically models word sequences, (4) search engine.
The goal of a large-scale adaptation system is to leverage one or
more of these adaptation opportunities. In this work we focus on
improvements from personalization of AM.

The benefits from speaker adaptation have been well established
in literature. We verified that the relative gain from adaptation holds
for newer deep learning techniques [1], so we expect adaptation to
provide strong gains on top of the future modeling technologies. In
general, the personalization techniques can be applied to, (a) a clus-
ter of speakers or an individual speaker, (b) a cluster of devices or a
particular device, (c) age or gender categories, (d) noise, reverbera-
tion etc. Personalization can account for different accents, speaking
rate, and acoustic environment etc., and may also be critical to retain
customers who are currently experiencing very high WER.
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Fig. 1. Personalization of acoustic model.

2.1. Challenges to Personalization

Prior studies have focused on techniques to improve adaptation ac-
curacy. However, we have seen limited treatment on key challenges
in deploying speaker adaptation to millions of speakers. This work
contributes towards better understanding the benefits and challenges
in a large-scale speaker adaptation framework.

The challenges to personalization stem from a huge number of
the SD models that need to built. In contrast to a single SI model,
personalization requires building millions of SD models. This puts
practical constraints on the number of SD parameters. A closely re-
lated issue is the quality of SD models. The SI model training has ac-
cess to a rich set of transcribed data but a majority of adaptation work
feeds on untranscribed data, where we use hypotheses from decod-
ing against SI model as approximate transcriptions. In this context,
it becomes important to seek ways to improve untranscribed data
quality by leveraging confidence-scores [16], clicked-queries [17],
completed-tasks e.g., setting up calendar event etc. Limited adapta-
tion data is another challenge for a large majority of speakers. We
may also have challenges from shared devices, where adaptation on
data from multiple users, sharing a device, may lead to regression for
some [18]. Furthermore, adaptation must also meet the constraints
of computation and latency. We demand a high throughput, in terms
of no. of models trained per day. The design of adaptation must also
address issues from potential future updates to the SI model. We
believe that above challenges will motivate researchers in the field
to develop effective solutions, and lead towards a wider push in de-
ploying speaker adaptation for large user bases.

3. INTERMEDIATE-LAYER ADAPTATION FRAMEWORK

In this section we briefly outline our framework of intermediate-
layer adaptation we presented in [1]. We discuss our framework
with respect to a representative DNN model in Fig. 2(a). In prac-
tice our DNNs consist of 5 hidden layers but for current description,
we consider a DNN with 2 non-linear hidden layers in (D0, D1) and
an output layer. Our baseline DNN architecture also includes SVD
layers (S0, S1) [5]. The non-linear hidden, linear SVD and output
layers consist of 2048, 208 and 6k activation units, respectively. We
use the notation “L-D0” to indicate DNN layer weights that input to
D0, from which we compute output of layer D0, similarly L-S0 and
L-O respectively indicates layers that input to S0 and Output.

Some of the recent work proposed adaptation on the bottom hid-
den layer (L-D0) or top layer (L-O) [4]. In [1] we demonstrated that
we can simultaneously benefit both accuracy and SD parameters by
adapting one of the intermediate layers. Adapting L-O only impacts
the senones [19] seen in adaptation data - in this context the method
exhibits similarity with MAP [20] of GMMs, where MAP requires
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Fig. 2. (a) A representative SVD-based DNN architecture; layers in
(D0, D1) indicate usual deep non-linear layers; layers in (S0, S1)
indicate linear SVD layers, (b) Inserting a compact linear layer I0
on top of SVD layer S0.

sufficient observation on all senones. In contrast, an intermediate-
layer adaptation exhibits similarities with transformation-based
adaptations e.g. MLLR [21][22], where for limited data we can
impact both seen and unseen senones due to inherent transformation
through subsequent DNN layers. Correspondingly intermediate-
layer adaptation requires far fewer parameters than that for top-layer
adaptation. We note typical no. of parameters for a production-level
DNN in Table 1, where we note that adapting intermediate-layers
offers huge savings. Furthermore for ASR, we rationalize first
few DNN layers as feature normalization steps, where device and
speaker-dependent features get normalized; we think of middle-
layers as higher-order feature synthesis, where we encapsulate
normalized features into abstract speech bases; and finally top-layer
is a classification layer that classifies speech into physical triphones
or senone states. Thus individually adapting different intermediate
DNN layers provides unique adaptation techniques.

3.1. Insert and adapt a linear layer on top of SVD layer

We can further improve the intermediate-layer adaptation framework
with inserting and adapting a linear layer on top of an intermedi-
ate SVD layer [1]. We demonstrate the step of inserting a layer in
Fig. 2(b); there we insert a linear network I0 on top of the SVD layer
S0, and adapt corresponding layer L-I0. The location of insertion
is chosen for best tradeoff between accuracy and SD parameters.
Adapting L-I0 obviously provides a big benefit in terms of overall
number of parameters, as also noted in Table 1. The number of asso-
ciated parameters is 208 x 208 = 43k, thus a fraction of that required
for layer L-D0 and L-O.

Overall the approach of intermediate-layer adaptation along
with inserting and adapting a layer provided benefits in terms of
both accuracy and SD parameters. This also provides a framework
for building future adaptation work. Next, we focus on building an
adaptation work in the intermediate-layer framework where we use
non-negativity constraints to yield sparser set of SD parameters.
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Table 1. Number of required parameters across adaptation tech-
niques. For non-negative techniques we report effective no. of non-
zero parameters.

Adaptation technique No. of Parameters
(in 1000’s)

Top layer L-O 2105
Input layer L-D0 1486
Individual layers in (L-S0, L-S1 etc.) 425
Individual inserted layers in (L-I0 etc.) 43
Individual inserted layers in (L-I0 etc.) 2.2
with non-negativity and threshold of 0.03

4. NON-NEGATIVITE DNN ADAPTATION

In this section we build on the speaker adaptation framework dis-
cussed in Sec. 3 and demonstrate a non-negative approach to provide
additional strong reduction in the number of SD parameters while
still retaining most of the accuracy gain.

Non-negativity constraints have been found to be useful for a
number of applications [14]. A non-negative factorization was de-
veloped for ASR dereverberation in spectro-temporal domain in [15,
23]. A key benefit of non-negative constraint is that it leads to a
sparse set of model parameters, where many of the non-essential pa-
rameters are optimized to be identically 0. In Sec. 2.1, we referred
to the size of SD parameters as a key challenge in successful de-
ployment of speaker adaptation to large scale tasks. In this context,
non-negativity of the adaptation parameters provides an ideal set of
constraints towards a small foot-print model. We further describe
our non-negative work with respect to Fig. 2. Following the insert
and adapt framework in Sec. 3.1, we insert a linear layer L-I0 on top
of the SVD layer L-S0. We refer to the weight matrix associated
with layer L-I0 as WI0, thus XI0 = WI0XS0, and where XS0 and
XI0 respectively indicate activations for layers L-S0 and L-I0. We
initialize, WI0 = I i.e., a diagonal matrix with all diagonal entries
being 1. This step ensures that the DNN output L-O activations are
identical with or without the inserted layer L-I0. At this initialization
step the matrix WI0 is a non-negative matrix. We follow the standard
negative cross entropy (CE) criterion [24] for speaker adaptation:

D =
1

N

N∑
t=1

S∑
st=1

p̃(st|xt) log p(st|xt) (1)

We update the weight elements WI0 in every mini-batch where we
also apply the non-negativity constraint in:

WI0[i, j] = 0 ∀ WI0[i, j] < 0 (2)

Above approach follows the standard back propagation update with
CE criterion except that we additionally force non-negative elements
to 0 in each mini-batch of the DNN update. Note that WI0 is initial-
ized to be non-negative and it remains non-negative throughout the
optimization steps. We note the benefits with this approach in Ta-
ble 2. We refer to Sec. 4.1 for details on our speaker adaptation
experimental setup. In Table 2, we see that non-negativity constraint
effectively requires only 72.1% of the parameters in the matrix WI ,
as the rest are forced to be identically 0. The word-error-rate-relative
(WERR) over the baseline (unadapted) is almost identical to that
from without non-negativity constraints. A WERR difference of less
1% is expected to be statistically insignificant. Thus this work pro-
vides about 27.9% relative reduction in the parameters without any

Table 2. Non-negative model adaptation with different threshold
constraints, see Sec. 4.2. Baseline (unadapted) WER = 14.15%. Best
adapted model without non-negative constraint has WERR = 11.3%.

Threshold Non-zero weights [%] WERR [%]
0 72.1 11.17
0.0001 60.3 11.17
0.0002 46.5 10.84
0.0005 13.8 10.46
0.001 3.0 9.16
0.005 0.5 4.55

loss in WER over the current best adaptation. In subsequent sections
we demonstrate additional scope to reduce the effective number of
SD parameters.

4.1. Experimental Setup

Our adaptation task consists of Microsoft US English voice-search
(VS) data across 50 speakers. Adaptation data includes 50 untran-
scribed utterances (4-5 mins.) per speaker, where we use the SI
model to decode and align data against decoded hypotheses. The
adapted models were tested on a distinct test set of 50 utterances per
speaker. We used our US English server language model with over
400K words for decoding. Our baseline speaker-independent (SI)
DNN AM was trained from a 1000 hours of VS and short-message-
dictation (SMD) data with 66-dim dynamic log-MelFilterbank fea-
tures and a context window of 11 frames, forming an input vector
of 726-dim. DNN had 5 hidden layers with 2048 nodes each, 5
SVD layers with about 208 nodes each [5], along with 6000 output
units. The hidden layers apply sigmoid nonlinearity; output layer
applies softmax. We regularize adaptation with Kullback-Leibler-
divergence (KLD) with a regularization coefficient of 0.5 [12]. Our
baseline SI model provided a word error rate (WER) of 14.15%.
Our previous best adaptation approach without non-negativity con-
straints provided a WER of 12.55%, thus a WER-relative (WERR)
of 11.3%. We use 2-Bytes to represent the SD parameters, thus the
current adaptation approach where we adapt an intermediate-layer
with 208x208 (43 K) parameters requires 86 KB per speaker. We
experimented with adapting different intermediate-layers and found
it effective to adapt the inserted layer on top of the 4th-SVD layer.
Our objective in this work is obtain an order an magnitude reduction
in the size of SD parameters.

4.2. Non-negative Adaptation with a Positive Threshold

Our initial work with non-negativity constraints already provided
substantial reduction in the no. of SD parameters. Here we seek
an even stronger improvement in the non-negativity framework we
discussed. We analyze the update equation (2); we note that choos-
ing a small-positive threshold can provide an additional leverage to
yield even sparser models.

WI0[i, j] = 0 ∀ WI0[i, j] < t,where, t > 0 (3)

Compared to (2), the only modification in (3) is a small-positive t.
Note that above constraint is applied in each mini-batch of DNN
update. This allows DNN to account for some of the approximation
loss in above by appropriately updating parameters in subsequent
mini-batches. We present the non-zero percent of parameters in WI0

for different t in Table 2. There we also include WERR results. As
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Table 3. Non-negative model truncation with different non-negative
thresholds, see Sec. 4.3. Best adapted model without non-negative
constraint has WERR = 11.3%.

Threshold Non-zero weights [%] WERR
0 72.1 11.17
0.01 27.8 11.06
0.02 12.3 11.23
0.03 5.1 10.19
0.04 2.2 8.51

expected we see that the non-zero elements decreases substantially
with larger t; correspondingly WERR too gradually reduces. One of
our key performance benchmark for adaptation is a 10+% WERR.
Thus we we see that a threshold of 0.0005 meets our performance
objective and reduces the effective no. of parameters to only about
13.8% of that without non-negativity constraints.

4.3. Setting Small-Positive Weights in the Non-Negative Model
to Zero

In this section, we seek an additional degree of freedom in our
speaker adaptation design where we may trade off between WERR
and no. of parameters without having to explicitly retrain the SD
model. This freedom is essential in an evolving speaker adaptation
implementation. Due to resource and cost considerations, an initial
implementation may have a far stronger constraint on the size of SD
parameters, that we may gradually relax with additional resources at
a later stage. In this context, we do not expect to completely retrain
SD models for different sizes of SD parameters. It is desirable to
build a single set of SD parameters and a new recipe to easily yield
varying size of SD parameters, of course with corresponding WER
tradeoffs. We demonstrate our non-negative approach to be very
suitable for this task. Following the non-negative updates in (2), we
first build a sparse set of SD parameters, we denote this in W 0

I0,
here that superscript 0 indicates threshold 0 in (2). Then we apply
following modification for a sparser set of parameters:

W t
I0[i, j] = 0 ∀ W 0

I0[i, j] < t,where, t > 0 (4)

We report results with this approach in Table 3. Similar to our earlier
observations in Table 2, we obtain trade offs between effective no.
of non-zero parameters and WERR. In particular we obtain a very
strong operating point with t = 0.03, where we require only 5% of
non-zero parameters and obtain 10+% WERR. In Fig. 3, we plot the
masks for respective thresholds following (4), understandably the
non-negative values are squeezed towards upper-left corner due to
underlying SVD structure. It is also understandable that the thresh-
olds in the Tables 2 and 3 have different range. We also conducted
a similar experiment for the previous best adaptation technique i.e.
without non-negativity constraints. There, we set weight elements
with absolute values less than a threshold to zero. Though, this could
provide some reduction in the effective no. of non-zero parameters,
the eventual benefit in accuracy and model-size was no match to that
obtained from the combination of non-negativity and thresholding in
(4). We can also plan to combine the work in Secs.4.2 and 4.3 but
we don’t expect additional big gains.

4.4. Effectively storing Non-negative SD parameters

In Tables 2 and 3, we noted benefit in terms of the effective non-zero
SD parameters. Here we continue to explicitly quantify the storage
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Fig. 3. Non-negative masks for respective thresholds following work
in Sec. 4.3. Please zoom-in and print in color.

requirements per speaker in Kilo-Bytes (KB). We propose following
3 approaches to represent the overall set of parameters in WI0 that
has a dimension of 208x208, (a) Bit-Mask - we prepare a mask of
size 208x208-bits, where each bit represents non-negativity of the
corresponding matrix element, (b) Table-lookup - we store the pair
(index, non-negative value) for all non-negative values; we individu-
ally require 2-Bytes for index and the value, (c) Single-blob - we can
store both non-negative values and zeros in a single binary blob by
leveraging the most-significant-bit (MSB) that conventionally repre-
sents sign of a value; we simply write a bit 1 for zero-valued SD
parameters and 2-Bytes for non-negative parameters where due to
non-negativity MSB will always be 0; this facilitates us to effectively
write and read the SD parameters and overall requires 1-bit for ze-
ros and 2-Bytes for non-negative values. These techniques provide
a spectrum of choices; the final selection will depend on non-zero
fraction in data and potentially other constraints from memory man-
agement etc. The non-negative approach in Table 3 with a threshold
of 0.03 and effectively 5.1% non-zero parameters in WI , requires
9.8KB, 8.8KB, and 9.5KB across data storing techniques in Bit-
Mask, Table-lookup, and Single-blob, respectively. This is a big win
over the current adaptation with 86KB, we have achieved an order of
magnitude reduction in the size of SD parameters and can far better
scale our service for millions of users. We also note our progress in
term of no. of SD parameters in Table 1. Clearly the combination
of inserting and adapting layer, non-negativity constraint and thresh-
olding provides a new benchmark in speaker adaptation and requires
only 2.2K parameters, whereas prior work required 425-2105K pa-
rameters.

5. CONCLUSION

In this work we presented an intermediate-layer adaptation frame-
work to seek substantial reduction in the number of SD parameters,
while still maximizing accuracy benefit with adaptation. We lever-
aged the framework in terms of a non-negative constraint, where we
provided 2 different approaches to seek substantial reduction in the
SD parameters. The approaches presented in this work isn’t specific
to speaker adaptation. Our techniques can also be applied to other
ASR adaptation applications. We have already seen benefits for non-
native speakers and expect to see benefits for scenarios across de-
vice, environment adaptation etc. The specific layer to be adapted
may in general be application specific. Overall, our unsupervised
speaker adaptation work provided 90% relative reduction in the size
of SD parameters by reducing the SD parameters from an earlier best
86KB to 8.8KB, while still retaining 10+% WERR over unadapted
baseline. Based on our results we advocate a greater push towards
personalization in future.
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