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ABSTRACT

In automatic speech recognition (ASR), adaptation and adap-
tive training techniques are used to perform speaker nor-
malization. Previous methods mainly focus on using these
techniques in isolation. In contrast, this paper investigates
two approaches to improve the ASR performance by com-
bining i-vector based speaker adaptive training in deep neural
network (DNN) acoustic models with discriminative adap-
tation techniques. First, we combine these techniques by
interpolating the decoding lattices of i-vector based sys-
tems with the decoding lattices of a discriminatively adapted
model. Then, we combine these methods by discriminatively
adapting the i-vector based system in unsupervised fashion.
Our experiments on TED-LIUM dataset show that compared
with a strong speaker independent baseline, lattice interpo-
lation and adaptation of the i-vector systems achieve 12.0%
and 15.6% relative improvements, respectively. Moreover, in
comparison to the i-vector based systems, lattice interpolation
reported a 4.5% relative improvement while discriminatively
adapting the i-vector system reported a 8.3% relative im-
provement.

Index Terms— Automatic speech recognition, deep neu-
ral networks, speaker normalization.

1. INTRODUCTION

In comparison to the conventional Gaussian mixture model
(GMM) based systems, Deep neural network (DNN) based
acoustic modeling has achieved state-of-the-art performance
in ASR systems [1]. However, DNNs, like all other machine
learning techniques, are susceptible to performance degrada-
tion due to the mismatch between the training and testing
conditions. Normalization techniques transform the model to
match the testing condition or augment the inputs to match the
model. In ASR, speaker normalization techniques are used to
minimize the mismatch between the training and testing con-
ditions due to the speaker variability.

Maximum a posteriori (MAP) [2] and maximum likeli-
hood linear regression (MLLR) [3] are commonly used to
normalize GMM- hidden markov model (HMM) systems. In
MAP, model parameters are re-estimated by maximizing the

posterior probability. MLLR performs speaker normalization
by estimating a linear transformation of the model parame-
ters to reduce the speaker mismatch. An approach of com-
bining these normalization techniques with superior feature
representation learning power of DNNs is to train a tandem
system [4, 5]. In tandem systems, a DNN is used to extract
bottleneck features to train a GMM-HMM system.

The speaker normalization for DNNs is important as it
improves the performance significantly [6–10]. However, due
to the generative nature of GMMs, most of the conventional
techniques cannot be directly used for discriminative DNNs.
In addition, DNN-HMM systems have millions of parame-
ters, which make most of the techniques prone to over-fitting,
especially when the normalization should be performed with
a small amount of data in unsupervised fashion.

In adaptation, test data is used to perform speaker normal-
ization while in adaptive training, the training data is used to
minimize the speaker variablity. The motivation behind our
research is focused on performing speaker normalization us-
ing both training and test data by combining speaker adaptive
training with adaptation techniques. In this paper, we propose
to combine i-vector based speaker adaptively trained systems
with discriminative adaptation techniques such as learning
hidden unit contributions (LHUC) [11] and bias adaptation.
We investigate this combination in two ways: first, by lattice
interpolation and then by performing LHUC / bias adapta-
tion on well-trained i-vector based systems. In addition, we
compare the bias adaptation with LHUC method. Our experi-
ments show that both techniques perform similarly when rec-
tified linear units (ReLUs) are used as hidden units. LHUC
requires modifications to the structure of the model. There-
fore, if the DNN is trained with ReLUs, bias adaption can
be performed without modifying the model structure. Fur-
thermore, we investigate how these combinations of speaker
normalization techniques perform when only a small amount
of adaptation data is available, which is more congruent with
real-world applications.

The rest of the paper is organized as follows. In Section 2,
a brief review of the DNN speaker normalization techniques
is given. Section 3 describes our experimental setup. Results
are reported in Section 4 and we conclude our work in Section
5.
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2. SPEAKER NORMALIZATION FOR DNN

Speaker normalization techniques for DNNs can be catego-
rized into two broad approaches: adaptation, and adaptive
training. Speaker adaptation methods deal with the speaker
variability by changing a well-trained model to match the test
speaker conditions, whereas speaker adaptive training learns
a way to deal with the speaker mismatch during training.

Linear transformation based adaptation methods augment
the original DNN model with a linear layer. Usually, the lin-
ear layer is initialized with an identity matrix and zero biases
and is updated with the back-propagation (BP) algorithm us-
ing the adaptation data while keeping the weights of the orig-
inal DNN fixed. The linear layer can be inserted between the
input layer and the first hidden layer, known as linear input
network (LIN) [12], or to the softmax layer known as lin-
ear output network (LON) [13] or between the hidden layers,
known as a linear hidden network (LHN) [14]. Since adap-
tation of all the model parameters is more powerful, some
methods adapt all the parameters by employing regulariza-
tion into the adaptation criterion. In [7], a KL divergence
based method is used to force the posterior distribution of the
adapted model to be closer to that of the speaker independent
(SI) model. In addition, the L2 regularization [15] aims to
keep the parameters of the adapted model closer to that of
the SI model. However, to reduce the per-speaker footprint,
some approaches perform the adaptation on a subset of pa-
rameters, including the last hidden layer [16], output layer bi-
ases [17], or more active hidden units of the network [16].
Another effective model adaptation technique is known as
LHUC [11, 18], which learns speaker dependent hidden unit
contributions during adaptation.

In DNN adaptive training, it is popular to provide speaker
information with the acoustic features. The intuition behind
this method is that a DNN is capable of exploiting the supple-
mentary information about speakers to adjust the model pa-
rameters for speaker normalization. The i-vectors [6, 8, 9, 19]
and bottleneck features [20] are commonly used as speaker
representations. In addition, recently, cluster adaptive training
(CAT) has been applied for speaker normalization [21,22]. In
CAT DNN approaches, a set of bases are estimated during
training and followed by an interpolation vector estimation
to combine the bases during testing. Another two ways of
performing adaptive training on DNNs include, learning an
adaptation network [23] and by spliting the DNN into speaker
dependent and speaker independent layers [24]. Furthermore,
the usage of CMLLR features for DNN training is also con-
sidered as adaptive training.

Since, the adaptation and adaptive training perform
speaker normalization in two different ways, our goal is
to combine state-of-the-art adaptation and adaptive training
techniques to improve the ASR performance. Specifically, we
focus on improving i-vector based speaker adaptive training
by combining with LHUC and bias adaptation techniques.

3. EXPERIMENTAL SETUP

In this paper, all the experiments are performed on the first
version of the TED-LIUM corpus [25]. The training set con-
tains 118 hours of speech over 774 TED talks. In all our ex-
periments, each talk is considered as a different speaker. We
used 90% of the training set for training and the rest is used
as the validation set. Our results are reported on the test set
(tst2010) and the development set (dev2010) containing 11
and 8 speakers respectively.

First, MFCC features are extracted from speech using a
25-ms window and a 10-ms frame-shift. Cepstral mean nor-
malization (CMN) per-speaker is then applied to the MFCCs.
Linear discriminant analysis (LDA) features are obtained by
first splicing 7 frames of 13-dimensional MFCCs and then
projecting downwards to 40 dimensions using LDA. A global
semi-tied covariance (STC) transformation [26] is applied on
top of the LDA features. In addition, we apply a speaker spe-
cific constrained maximum likelihood linear regression (CM-
LLR) transform on top of the LDA features to create speaker
normalized CMLLR features. The GMM-HMM system for
generating the alignments for DNN baselines is built on top
of these 40 dimensional CMLLR features.

All our DNNs have 6 sigmoid hidden layers with 2048
units per layer, and 4014 senones as the outputs. We trained
our baselines on top of two different feature types, namely
LDA and CMLLR. For each feature type, we trained two
DNNs with ReLUs and sigmoid units for comparison. These
baselines are trained on the acoustic features that span a con-
text of 11 neighboring frames. Before being presented to the
DNN, cepstral mean and variance normalization (CMVN) is
performed on the features globally. To train the network, we
use dropout pre-training with a rate of 0.5. All the DNNs are
trained to optimize the cross-entropy criterion with a mini-
batch size of 256 and a momentum of 0.9. For ReLUs we
started DNN training with learning rate of 0.1 and adapta-
tion performed with a large learning rate of 1.0 . For sigmoid
DNNs, 1.0 and 5.0 learning rates were used for training and
adaptation, respectively. All these learning rates are calcu-
lated per mini-batch. We used 3 iterations for all adaptation
tasks. CNTK [27] is used to train the DNNs. The powerful
Cantab language model [28] is used in decodings. The Kaldi
toolkit [29] is used to build the GMM-HMM systems and for
the i-vector extraction. The i-vectors are trained on top of
the same 40 dimensional acoustic features (LDA or CMLLR).
The universal background model (UBM) consist of 128 gaus-
sians. We extracted i-vectors that are of 100 dimensions. In
all our experiments, speaker-level i-vectors are used.

4. RESULTS

Table 1 shows results for various speaker normalization tech-
niques on top of the LDA features. For the models with Re-
LUs, performances of bias adaptation and LHUC are very
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Table 1. Word Error Rate (WER%) of various speaker nor-
malization techniques on top of the SI LDA models.

Model
ReLU Sigmoid

Test Dev Test Dev

LDA 16.9 18.2 16.7 18.1
+ LHUC 15.5 17.3 15.3 17.1
+ Bias 15.6 17.3 15.5 17.4
+ i-vector 15.7 16.9 15.1 16.8

Table 2. WER (%) for various combinations of decoding lat-
tice interpolations with a scale factor of 0.5.

Combination
ReLU Sigmoid

Test Dev Test Dev

i-vector & LHUC 15.0 16.8 14.7 16.5
i-vector & Bias 15.1 16.7 14.8 16.8
LHUC & Bias 15.5 17.3 15.4 17.2

similar. This is understandable since the bias shift and LHUC
can operate in the same range for ReLUs. However, for sig-
moid units, LHUC perform better than adapting the biases.
This is because when sigmoids are used, the bias adaptation
is restricted between the range [0,1]. Therefore, if the model
is trained with ReLUs, it is possible to simply adapt the bi-
ases without adding extra parameters to learn amplitudes for
LHUC. It is worth noting that LHUC is independent of the ac-
tivation function. Aside from the improvements observed on
the test set for the ReLUs model, the adaptive training using
i-vectors reported the best WERs.

4.1. Techniques combination with lattice interpolation

For some speakers, i-vector system performed better and for
the rest of the speakers LHUC / bias adaptation reported lower
WERs. Therefore, we combined decodings by interpolating
the lattices [30] with a scaling factor of 0.5. As it can be
seen from Table 2, interpolating the lattices of i-vector sys-
tem with the lattices of LHUC or bias adaptation improved
the performance significantly. However, combining LHUC
and bias adaptation lattices reported no improvements, which
further indicates that LHUC and the bias adaptation are simi-
lar.

4.2. Techniques combination with discriminative adapta-
tion

These findings led us to investigate the combination of i-
vector based implicit speaker normalization with LHUC
or bias adaptation by discriminatively adapting the speaker
adaptively trained i-vector systems. From Table 3, it can

Table 3. WER (%) for discriminative adaptation of the adap-
tively trained i-vector systems.

Method
ReLU Sigmoid

Test Dev Test Dev

None 15.7 16.9 15.1 16.8
LHUC 14.7 16.4 14.2 16.3
Bias 14.7 16.4 14.4 16.6

Table 4. WER (%) for Bias adaptation analysis in i-vector
systems.

Method
ReLU Sigmoid

Test Dev Test Dev

None 15.7 16.9 15.1 16.8
Bias 14.7 16.4 14.4 16.6
1st layer Bias 14.9 16.4 14.6 16.2
update i-vec 14.9 16.4 14.7 16.3

+ LHUC 14.5 16.3 14.1 16.2

be seen that the combination of these techniques improved
the performance significantly giving up to 15.0% and 9.9%
relative improvements over the baseline systems for the test
set and the developement set respectively. Moreover, up to
6.0% relative improvements were reported with reference to
the best systems obtained when these techniques were used
in isolation. The relative improvements on the development
set is considerably lower than the that of the test set. This is
a result of having more data per-speaker in the test set than
the development set. The combination of LHUC and bias
adaptation reported no improvements.

The i-vector based systems implicitly adapt the models
by providing a bias shift to the first hidden layer. Therefore,
it is worthwhile to investigate the adaptation of the first hid-
den layer biases. As can be seen in Table 4, adapting only
the first hidden layer biases consistently improved the per-
formance for both i-vector based DNN systems. This means
that the i-vector based bias shift to the first hidden layer is
not optimal and should be able to improve the performance
by refining it. As given in Table 4, updating the i-vectors im-
proved the performance. Furthermore, the gain achieved by
adapting the i-vector is very similar to that of adapting only
the first hidden layer bias. Adapting the i-vector has the ad-
vantage of having a low per-speaker footprint compared with
the LHUC and bias adaptation methods. Since updating the i-
vector only adapts the model in the first hidden layer, to adapt
the model at all levels, we performed LHUC in combination
with i-vector adaptation. As it can be seen in the last row of
Table 4 , this reported the best performances on both datasets
for DNNs trained with sigmoid units and ReLUs. In sum-
mary, with these combinations it was possible to obtain rel-
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Table 5. WER (%) of various speaker normalization tech-
niques on top of the CMLLR models.

Model
ReLU Sigmoid

Test Dev Test Dev

CMLLR 15.0 16.9 15.5 16.9
+ LHUC 14.4 16.4 14.7 16.7
+ Bias 14.5 16.3 14.8 16.8
+ i-vector 14.8 15.9 14.7 16.0

+ LHUC 14.2 15.7 14.0 15.7
+ Bias 14.2 15.8 14.2 15.8
+ update i-vec 14.3 15.8 14.2 16.0

+ LHUC 14.2 15.7 14.2 15.7

ative improvements upto 15.6% over the SI baselines and up
to 6.6% relative improvements over the best performed tech-
nique when used in isolation.

Table 5 shows how these combinations performed on top
of the CMLLR features. As it can be observed, absolute
improvements up to 1.5% and 1.2% were reported on test
and development sets, respectively. The improvements are
smaller compared with that of the models trained on LDA
features. This is simply because CMLLR features are already
transformed to reduce the mismatch due to speaker variabil-
ity.

4.3. Investigation with small amount of adaptation data

Next, we investigate how these techniques perform with a
small amount of adaptation data. In this experiment, 48 sec-
onds per-speaker is used on average. This was achieved by
selecting only the first 5 segments from each test speaker for
i-vector and CMLLR transform estimation. In addition, same
amount of data is used for the adaptation alignment creation.
We decided to select the data from the initial segments in-
stead of selecting randomly to facilitate the reproducibility
of these results. According to Table 6, both LHUC and bias
adaptation decreases the WER by 2.4% relative. Both CM-
LLR and i-vector based adaptive training methods reported
a relative improvement of 3.0%. Moreover, the combination
of i-vectors based adaptive training with discriminative adap-
tation techniques reported the best results with relative im-
provements of 7.7%. However, the relative improvements are
significantly lower compared with the self adaptation.

Finally, in Table 7, we performed the decoding lattice in-
terpolation on the test set for the SI DNNs trained with ReLUs
using 48 seconds of adaptation data per-speaker. As it can
be seen, LHUC and bias adaptation combination recorded no
improvement. As expected, combinations of i-vector based
system with LHUC and bias adaptation improved the per-
formance by 7.1% relatively. This is slightly lower than the
improvements achieved from discriminatively adapting the i-

Table 6. WER (%) of various speaker normalization com-
binations when 48 seconds of adaptation data per-speaker is
used in unsupervised fashion. Relative improvements over
the baselines are given in brackets.

Method LDA SI baseline LDA i-vector system

None 16.9 (-) 16.4 (3.0)
+ LHUC 16.5 (2.4) 15.6 (7.7)
+ Bias 16.5 (2.4) 15.6 (7.7)
+ Update i-vec - 15.6 (7.7)
+ CMLLR 16.4 (3.0) -

Table 7. WER (%) for various combinations of decoding lat-
tice interpolations when 48 seconds of adaptation data per-
speaker is used in unsupervised fashion. Relative improve-
ments over the baselines are given in brackets.

Combination WER

i-vector & LHUC 15.7 (7.1)
i-vector & Bias 15.7 (7.1)
LHUC & Bias 16.5 (2.4)

vector based system as given in Table 6.

5. CONCLUSIONS

In this paper, we investigated two ways of combining i-vector
based adaptive training with unsupervised discriminative
adaptation techniques for speaker normalization in DNNs.
Firstly, we interpolated decoding lattices of an i-vector based
system with the decoding lattices of a model, after the model
was discriminatively adapted using LHUC or bias adaptation
techniques. The lattice interpolation reported up to 12.0% and
4.5% relative improvements over the SI baseline and the i-
vector based system, respectively. Secondly, we showed that
by discriminatively adapting i-vector systems, it is possible
to achieve upto 15.6% and 8.3% relative improvements over
the SI baseline and the i-vector based system, respectively.
In addition, we presented the results for these combinations
on DNNs trained using speaker normalized CMLLR fea-
tures. Furthermore, we empirically showed that when ReLUs
are used, bias adaptation has the same effect as the LHUC
adaptation. Finally, we investigated how these combinations
perform when the amount of available adaptation data is
small.
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