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ABSTRACT
Deep neural network (DNN) based acoustic models have greatly
improved the performance of automatic speech recognition (ASR)
for various tasks. Further performance improvements have been
reported when making DNNs aware of theacoustic context(e.g.
speaker or environment) for example by adding auxiliary features
to the input, such as noise estimates or speaker i-vectors. We have
recently proposed a context adaptive DNN (CA-DNN), which is an-
other approach to exploit the acoustic context information within a
DNN. A CA-DNN is a DNN that has one or several factorized lay-
ers, i.e. layers that use a different set of parameters to process each
acoustic context class. The output of a factorized layer is obtained
by the weighted sum over the contribution of the different context
classes, given weights over the context classes. In our previous work,
the class weights were computed independently of the recognizer.
In this paper, we extend our previous work by introducing the joint
training of the CA-DNN parameters and the class weights computa-
tion. Consequently, the class weights and the associated class defi-
nitions can be optimized for ASR. We report experimental results on
the AURORA4 noisy speech recognition task showing the potential
of our approach for fast unsupervised adaptation.
Index Terms: Automatic speech recognition, Deep neural networks,
Acoustic model adaptation, Context adaptive DNN, Factorized DNN

1. INTRODUCTION

The increased use of deep neural network (DNN) based acoustic
models [1, 2] has created a crucial need for techniques for adapting
DNNs to theacoustic context(e.g. speaker or environment) seen at
test time. There has been much research on DNN adaptation, focus-
ing mainly on three main directions, i.e. input feature transformation
using transforms trained discriminatively [3, 4] or independently of
the DNN [5, 6], direct adaptation or transformation of the DNN pa-
rameters [7–13], and using auxiliarycontext featuresrepresenting
the acoustic context (such as i-vectors or noise estimates) to the in-
put of the DNN layers [14–19]. Among these approaches, exploit-
ing auxiliary context features appears particularly promising for fast
adaptation since only several seconds of speech may be sufficient to
compute the auxiliary features. The success of these approaches re-
veals that performance gains can be achieved by making the DNN
aware of the acoustic context. However, simply inputting the auxil-
iary features to a DNN may not necessarily be the best approach for
exploiting context information. Other variations have been proposed
such as inputting the auxiliary features to several layers or adding
layers to transform the auxiliary features before inputting it to the
DNN [17,18].

∗Chengzhu Yu is with the University of Texas at Dallas. He contributed
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We have recently proposed a different approach for incorporat-
ing acoustic context into a DNN by making the DNN parameters
directly dependent on the acoustic context. We called this approach
context adaptive DNN (CA-DNN) [20]. A CA-DNN is realized by
factorizing one or several layers into sub-layers associated with con-
text classes or clusters. The output of afactorized layeris obtained
as the weighted sum of the output associated with each sub-layer,
weighted by context class weights. The proposed CA-DNN is thus
related to cluster adaptive training (CAT) that was initially proposed
for legacy GMM-HMM acoustic models [21] and recently revis-
ited for DNN-based acoustic models [22, 23]. CAT also defines
class/cluster dependent parameters and performs adaptation using
a linear interpolation of the different class parameters. The main
difference originates from the way the class weights are computed.
CAT computes the class weights by optimizing likelihood [21] or
cross entropy [22, 23] using adaptation data. The proposed CA-
DNN derives the class weights from an external context represen-
tation such as i-vectors, which may arguably be less computation-
ally demanding at test time. During training, the parameters of the
network and the factorized layers are trained in a soft manner given
the training data and the corresponding class weights. During test-
ing, the CA-DNN is adapted by the weighted sum of its parameters
given the class weights associated with the acoustic context of the
test conditions.

In [20], we tested CA-DNN for the TIMIT continuous phoneme
recognition task. We used class weights obtained by GMM clus-
tering of utterance-based i-vectors. The i-vectors can be computed
blindly during testing allowing fast unsupervised adaptation. How-
ever, since the class weights are computed independently of the rec-
ognizer, they do not achieve an optimal representation of the acoustic
context for ASR. In this paper, we extend our previous work by in-
troducing the joint learning of the CA-DNN parameters and the class
weights. The class weights are derived from i-vectors that are trans-
formed using anancillary neural network, which is trained jointly
with the CA-DNN. Consequently, we can obtain class weights and
thus context class representations that are optimized for ASR. We
tested our approach on the AURORA4 [24] noisy speech recogni-
tion task showing the potential for fast unsupervised adaptation.

The remainder of this paper is as follows. In Section 2, we re-
view the principles of CA-DNN. In Section 3, we introduce the novel
structure of CA-DNN, which includes an ancillary network for con-
text class weights computation and elaborate on the joint training
procedure. We then present experimental results in Section 5. Fi-
nally, Section 6 concludes the paper and discusses future research
directions.
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2. CONTEXT ADAPTIVE DNN

2.1. Notations

Before describing CA-DNN, let us introduce notations by reviewing
a conventional DNN used for acoustic modeling as shown in Figure
1-(a). A DNN based acoustic model is trained to output the HMM
state posterior probabilities given input speech features. The DNN
consists of several hidden layers. The input of theith layer of a
DNN is denoted byx(i−1), where by definitionx(0) corresponds to
the input features or input layer. The output of theith layer,x(i), is
obtained as,

x
(i) = σ(z(i)),

z
(i) = W

(i)
x
(i−1) + b

(i)
, (1)

whereW(i) andb(i) are the weight matrix and bias vector of the
linear transformation associated with theith layer, andσ() is the ac-
tivation function. In this paper we employ sigmoid activation func-
tions [2]. The activation function of the last layerI, is a softmax
function as,

x
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wherex(I)
n is thenth element of the output of the last layer andz

(I)
n

is to thenth element of vectorz(I).

2.2. Principles of CA-DNN

We have recently proposed to modify the structure of a conventional
DNN to make its parameters adaptive to the acoustic context. Fol-
lowing the ideas of committee machines [25, 26], we introduced a
CA-DNN, which is a DNN with one or several layers that are fac-
torized, meaning that they are decomposed in sub-layers that are
associated with different acoustic context classes. The output of a
factorized layer is obtained as the weighted sum of the contribution
of each sub-layer as,

z
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,z
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whereW(i)
k andb(i)

k andαk are the weight matrix, bias vector and
class weight associated with thekth context class, respectively, and
K is the number of context classes considered. The class weight
vectorα = [α1 . . . αK ] characterizes the acoustic context of a given
utterance, which may depend on the task, e.g. the gender, speaker or
acoustic environment (noise or reverberation). For example,α can
be obtained as the posteriors derived from speaker or environment
clustering.

Note that it is also equivalent to express a CA-DNN as a con-
ventional DNN whose parameters are obtained as the weighted sum
of the parameters associated with each context class as,


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(4)

Equation (4) emphasizes that CA-DNN realizes the direct adaptation
of the DNN parameters to the acoustic context given the context class
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Fig. 1. Schematic diagram of (a) a conventional DNN and (b) the
proposed context adaptive DNN with theith layer replaced by a fac-
torized layer. Note that the dotted boxes are included to emphasize
intermediate steps in the computation of the output of a hidden layer
(i.e. linear transformation and activation function) and are not actual
hidden layers.

weights. It can thus realize fast adaptation if the weightsαk can be
computed from a small amount of speech data.

In [20] we proposed to use context weights computed indepen-
dently of the recognizer. For example, we used posteriors obtained
from GMM clustering of i-vectors as class weights. However, when
the context weights are computed independently of the CA-DNN,
they may not represent the acoustic context in an optimal way with
respect to ASR performance. In the next section we propose an ap-
proach to obtain context weights and thus context class definitions
optimized for ASR.

3. CA-DNN WITH JOINT TRAINING

3.1. Ancillary network for class weight computation

Instead of inputting directly class weights to the factorized layer of
the CA-DNN [20], we introduce an ancillary network that computes
class weights given context features. This ancillary network is equiv-
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alent to a gating network used for example in mixture of experts
models [25], except that its input consists of context features that are
different from the input of the factorized layer. By interconnecting
the ancillary network with the factorized layer, it becomes possible
to train both networks jointly using error backpropagation. Conse-
quently we can obtain classes and class weights optimized for ASR.
Figure 1-(b) is a schematic diagram of a CA-DNN with the pro-
posed ancillary network for class weight computation. We call such
network a CA-DNN with joint training (CA-DNN-JT).

3.2. Joint training of CA-DNN and ancillary network

Let us denote byΘ , {W(1),b(1), . . . ,W
(i)
k ,b

(i)
k . . .W(I),b(I)}

the parameters of the CA-DNN and byΩ ,

{V(1), c(1) . . . ,V(J), c(J)} the parameters of the ancillary
network, whereV(j) andc(j) are the weight matrix and bias vector,
and J is the number of layers of the ancillary network. We can
jointly train Θ andΩ by optimizing the same objective function,
J(Θ,Ω). We use here the cross entropy criterion. We employ the
stochastic gradient descent (SGD) with the error back-propagation
algorithm to compute the gradient of the network parameters, by
back-propagating the error signals to both the main and the ancillary
networks.

3.2.1. Gradients w.r.t the CA-DNN parameters

The gradient of the parameters of a factorized layer can be obtained
as,


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whereδ is the back-propagated error that is expressed as,

δ
(i) = ((W(i+1))T δ(i+1))⊙ σ

′(z(i)). (6)

⊙ is the Hadamard product andσ′(z(i)) is the derivative of the acti-
vation function w.r.t.z(i). Equation (5) is similar to the expression
of the gradient for a conventional neural network [27] except for the
introduction of the weighting termαk. Moreover, Eq. (6) is identical
to the expression for a conventional DNN butz

(i) should be calcu-
lated with Eq. (3) andW(i+1) should be calculated with Eq. (4) if
layeri+ 1 is factorized.

3.2.2. Gradient w.r.t. the ancillary network parameters

The gradient with respect to the ancillary network parameters,Ω,
can be obtained with the chain rule as,

∂J(Θ,Ω)

∂Ω
=
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∂α

∂α

∂Ω
. (7)

The gradient can thus be obtained with conventional error backprop-
agation but with the error signal at the output of the ancillary network
expressed as,
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wherex(i)
n , z(i)n , z(i)k,n andδ(i)n are thenth component of the vectors

x
(i), z(i), z(i)k andδ(i). The implementation of the proposed method

requires thus simple modifications of an existing DNN training im-
plementation.

We investigate two types of activation functions for the output
layer of the ancillary network, i.e. softmax and linear. The softmax
activation function ensures that the class weights sum up to 1. Im-
posing this constraint is in accordance to our previous experiments
where we used Gaussian posteriors as class weights but it is not nec-
essary. Moreover, when using softmax activation, the gradient in
Eq. (7) takes very small values because the derivative of the softmax
activation is often close to zero. In contrast, using a linear activation
does not impose any constraint on the weights but may mitigate the
vanishing gradient problem of the softmax activation.

4. RELATION WITH PREVIOUS WORKS

We have already mentioned in the introduction that CA-DNN is di-
rectly related to cluster adaptive training [21–23] with the main dif-
ference originating from the class weight computation.

CA-DNN is also related to committee machines that distribute
the learning among a number of expert networks and combine their
outputs [25,26]. In particular the mixture of experts model [28] also
employs a gating network to compute the weights associated with
each expert. A similar approach has been investigated for speech
recognition [29]. These studies usually employ the same input fea-
tures for the expert networks and the gating network. In our work,
we employ context features that can represent the long-term acoustic
context and that differ from the input speech features.

Finally, factorization of hidden layers of a DNN have also been
used recently for speaker adaptive training [12, 30, 31], to better ex-
ploit training data over different tasks [32], or as an extension of
multi-task learning for low resource ASR [33]. These approaches
largely differ from the proposed CA-DNN as they do not perform a
linear interpolation of the different class parameters.

5. EXPERIMENTS

We carried out experiments using the AURORA4 [24] speech cor-
pus. AURORA4 is a noisy version of WSJ0 5k, which includes dif-
ferent types of noise. There are four evaluation sets, i.e., A (clean),
B (six types of additive noises), C (clean with channel distortion),
D (six types of additive noises with channel distortion). All experi-
ments were performed using the multi-condition training data set of
AURORA4. The training data set consists of 83 speakers and about
14 hours of data. Note that the training and testing conditions are
relatively matched, i.e. the training data includes the same noise and
channel conditions as the evaluation data but the SNRs of training
data are 10-20 dB and those of evaluation data are 5-15 dB.

5.1. Settings

The baseline acoustic model consists of a DNN with 5 hidden layers
each with 1024 units per layer and 3042 output units correspond-
ing to the HMM states. We used sigmoid activation functions for
all hidden layers. The speech features consists of 24 log mel filter-
bank coefficients appended with delta and acceleration coefficients.
We employed 11 concatenated speech features as input to the DNN
(792 dimensions in total). The speech features were processed with
utterance level cepstral mean normalization, and further normalized
using mean and variance normalization parameters calculated on the
training data.

We trained the DNN using discriminative pre-training, and then
fine-tuned it using the cross entropy criterion. For the fine tuning,
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Table 1. WER for the evaluation set of AURORA4 using bigram
and trigram language models. The best results are highlighted with
bold font.

bigram trigram
DNN 15.2 11.9
DNN + i-vect 14.3 11.3
CA-DNN (i = 1) 16.0 12.4
CA-DNN-JT (i = 1, softmax) 14.7 11.3
CA-DNN-JT (i = 1, linear) 14.3 11.2

we used an initial learning rate of 0.3, a momentum of 0.9 and a
batch size of 128. The learning rate was gradually decreased when
the frame accuracy did not improve for a cross validation set.

In addition to the speech features, we used i-vectors as context
features. The i-vectors were obtained by training a GMM universal
background model (UBM) of 512 dimensions. We then extracted i-
vectors of 80 dimensions. The i-vectors were finally processed with
LDA to reduce their size to 25 components, using the speaker labels
to train the LDA transformation. We used in this experimentutter-
ance level i-vectorscomputed with Kaldi [34]. Note that since the
speech data contains noise and channel mismatch, the i-vectors may
also represent noise/channel characteristics in addition to speakers
characteristics.

For CA-DNN, we tested two approaches to obtain the class
weights. The first approach follows [20], where we used a GMM
trained from the i-vectors to compute posteriors that are used as class
weights. We used a GMM with 4 components. The second approach
consists of the proposed CA-DNN-JT. For CA-DNN-JT, the inputs
of the ancillary network are the utterance level i-vectors described
above. The ancillary network consists of a single hidden layer with
25 hidden units and sigmoid activation functions. The output layer
has 4 output units. We performed experiments with both softmax
and linear output layers. The parameters of the CA-DNN and the
ancillary network are jointly trained using the procedure described
in Section 3. In this paper, we only investigated the factorization of
a single layer.

For all experiments, we used both bi-gram and tri-gram language
models for decoding. In both cases, we used a language model
weight scale of 15 and a beam value of 400. The results are eval-
uated in terms of word error rate (WER) for the evaluation set.

5.2. Results

Table 1 shows the WER for a conventional DNN, DNN with i-vector
auxiliary features, CA-DNN with class weights obtained from i-
vector posteriors and the proposed CA-DNN-JT with softmax and
linear output layers1 . The results for CA-DNN were obtained when
factorizing the first layer (i.e.i = 1). Note that our baseline is
comparable with other results reported on the task with a similar
configuration [22]. However, it is slightly worse than the state-of-
the-art on this task [15] because we used discriminative pre-training
and a network with 5 layers instead of 7 to speedup the experimen-
tal turnaround. Moreover, we do not use CMLLR feature adaptation
because we focus here on fast adaptation and CMLLR requires more
than one utterance to compute the feature transformation parameters.

From Table 1, we observe that using i-vector auxiliary features
achieves about 5 % relative improvement. CA-DNN without joint

1All networks have the same number of hidden layers and hidden units.
CA-DNNs have more parameters since they include a factorized hidden layer.
Note that we confirmed in [20] that the performance improvement brought
about by CA-DNN was not due to the increased number of parameters.

Table 2. WER for different position of the factorized layer using the
trigram language model. The best results are highlighted with bold
font.

Factorized layer,i 1 2 3 4 5
CA-DNN-JT (linear) 11.2 10.7 10.9 11.1 11.3

Table 3. WER for the evaluation set of AURORA4 using bigram and
trigram language models for baseline DNN system, a system with i-
vectors auxiliary input features and the proposed CA-DNN-JT. The
best results are highlighted with bold font.

A B C D Avg.
bigram
DNN 6.1 10.2 11.0 22.4 15.2
DNN + i-vect 5.6 9.5 9.6 21.3 14.3
CA-DNN-JT (i = 2, linear) 5.3 9.4 9.9 20.2 13.7
trigram
DNN 3.7 7.4 8.4 18.3 11.9
DNN + i-vect 3.7 7.1 7.4 17.4 11.3
CA-DNN-JT (i = 2, linear) 3.7 6.6 7.6 16.4 10.7

training degraded performance in this case. However, the proposed
CA-DNN-JT with linear output layer achieved a performance im-
provement comparable with using i-vectors as auxiliary features.
The performance degraded when we used a softmax output layer,
probably because of the vanishing gradient as discussed in sub-
section 3.2.2.

Table 2 shows the results for different factorized layers. We ob-
serve that better performance could be achieved when factorizing the
second, third or fourth layer. When factorizing the second layer, we
could achieve a 10% relative improvement over our DNN baseline.

Finally, Table 3 shows detailed results for the different test sets
with bigram and trigram language models. The proposed CA-DNN-
JT improves performance over the DNN baseline in all conditions
and outperforms i-vector auxiliary features except for set C (clean
with channel mismatch). CA-DNN-JT appears especially efficient
in noisy conditions. Note that using i-vectors as auxiliary input fea-
tures performs bias compensation of the first layer. This may explain
why it performs better for compensating the channel mismatch of
the set C. Since CA-DNN realizes adaptation of the weight matri-
ces, both approaches could be complementary, and we will explore
their combination in future work.

6. CONCLUSIONS

In this paper we proposed an extension of the recently proposed CA-
DNN. We introduced an ancillary network to compute context class
weights, and interconnected it with the CA-DNN to enable joint
training. This allows obtaining context classes and class weights
optimized for ASR. CA-DNN provides an alternative to conven-
tional approaches for making DNN aware of the acoustic context
by exploiting auxiliary information. For utterance-based unsuper-
vised adaptation on the AURORA4 task, the proposed CA-DNN-JT
achieved performance competitive with conventional approach that
uses i-vectors as auxiliary input features.

In future work, we will explore other configurations and topolo-
gies for the CA-DNN and ancillary network to achieve better context
class representation [35] and to reduce the number of model param-
eters [11,31].
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