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ABSTRACT We have recently proposed a different approach for incorporat-

Deep neural network (DNN) based acoustic models have great)d acoustic context into a DNN by making the DNN parameters
improved the performance of automatic speech recognition (ASR§irectly dependent on the acoustic context. We called this approach
for various tasks. Further performance improvements have beépntext adaptive DNN (CA-DNN) [20]. A CA-DNN is realized by
reported when making DNNs aware of theoustic contex{e.g.  factorizing one or several layers into sub-layers associated with con-
speaker or environment) for example by adding auxiliary featuredeXt classes or clusters. The output diatorized layeris obtained

to the input, such as noise estimates or speaker i-vectors. We ha@é the weighted sum of the output associated with each sub-layer,
recently proposed a context adaptive DNN (CA-DNN), which is an-Weighted by context class weights. The proposed CA-DNN is thus
other approach to exploit the acoustic context information within d€lated to cluster adaptive training (CAT) that was initially proposed
DNN. A CA-DNN is a DNN that has one or several factorized lay- for legacy GMM-HMM acoustic models [21] and recently revis-
ers, i.e. layers that use a different set of parameters to procelss edt®d for DNN-based acoustic models [22, 23]. CAT also defines
acoustic context class. The output of a factorized layer is obtaineglass/cluster dependent parameters and performs adaptation using
by the weighted sum over the contribution of the different contex@ linear interpolation of the different class parameters. The main
classes, given weights over the context classes. In our previoks wordifférence originates from the way the class weights are computed.
the class weights were computed independently of the recognizérAT computes the class weights by optimizing likelihood [21] or
In this paper, we extend our previous work by introducing the jointC'0SS entropy [22, 23] using adaptation data. The proposed CA-
training of the CA-DNN parameters and the class weights computa®NN derives the class weights from an external context represen-
tion. Consequently, the class weights and the associated class dé@tion such as i-vectors, which may arguably be less computation-
nitions can be optimized for ASR. We report experimental results olly demanding at test time. During training, the parameters of the
the AURORA4 noisy speech recognition task showing the potential€twork and the factorized layers are trained in a soft manner given
of our approach for fast unsupervised adaptation. '_the training data z?\nd the correspondln_g class Welght_s. During test-
Index Terms: Automatic speech recognition, Deep neural networksng. the CA-DNN is adapted by the weighted sum of its parameters

Acoustic model adaptation, Context adaptive DNN, Factorized DNNJiven the class weights associated with the acoustic context of the
’ ’ test conditions.

1. INTRODUCTION

In [20], we tested CA-DNN for the TIMIT continuous phoneme
ognition task. We used class weights obtained by GMM clus-
ng of utterance-based i-vectors. The i-vectors can be computed
ndly during testing allowing fast unsupervised adaptation. How-
er, since the class weights are computed independently of the rec-
gnizer, they do not achieve an optimal representation of the acoustic

The increased use of deep neural network (DNN) based acoust}gc
models [1, 2] has created a crucial need for techniques for adaptir{gri
DNNs to theacoustic contexte.g. speaker or environment) seen aty i
test time. There has been much research on DNN adaptation, focua;
ing mainly on three main directions, i.e. input feature transformatiorb

using transforms trained discriminatively [3, 4] or independently Ofcontext for ASR. In this paper, we extend our previous work by in-

the DNN [5, 6], direct adaptation or transformation of the DNN pa'troducing the joint learning of the CA-DNN parameters and the class

:ﬁ;ngéirjsg;gg’%’t;?d(slli';:%:%g;%ﬁgtoeftnL?géuéizﬂ);?:;nt%n%e i%eights. The class weights are derived from i-vectors that are trans-
put of the DNN layers [14-19]. Among these approaches, exploit. rmed using arancillary neural networkwhich is trained jointly

! - - - ith the CA-DNN. Consequently, we can obtain class weights and
ing auxiliary context features appears particularly promising for fasgé

. h o us context class representations that are optimized for ASR. We
adaptation since only several seconds of speech may be sufficient Sted our approach on the AURORA4 [24] noisy speech recogni-
compute the auxiliary features. The success of these approaches B task showing the potential for fast unsupervised adaptation
veals that performance gains can be achieved by making the DN '
aware of the acoustic context. However, simply inputting the auxil-
iary features to a DNN may not necessarily be the best approach for
exploiting context information. Other variations have been proposegi e
such as inputting the auxiliary features to several layers or addingtr

layers to transform the auxiliary features before inputting it to thetext class weights computation and elaborate on the joint training
DNN[17,18]. procedure. We then present experimental results in Section 5. Fi-

*Chengzhu Yu is with the University of Texas at Dallas. He dbated n_aIIy, _Section 6 concludes the paper and discusses future research
to this work while he was an intern at NTT. directions.

The remainder of this paper is as follows. In Section 2, we re-
w the principles of CA-DNN. In Section 3, we introduce the novel
ucture of CA-DNN, which includes an ancillary network for con-
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2. CONTEXT ADAPTIVE DNN oupt (O O O O

2.1. Notations

Before describing CA-DNN, let us introduce notations by reviewing

a conventional DNN used for acoustic modeling as shown in Figure i Hidden (2T O O O} )
1-(a). A DNN based acoustic model is trained to output the HMM layer Y Y
state posterior probabilities given input speech features. The DNN 2® . EEE .
consists of several hidden layers. The input of tfelayer of a ““'“(;)“4 """""
DNN is denoted by , Where by definitiorx'*’ corresponds to —— | — —
the input features or input layer. The output of tHelayer,x(?, is 10 O O O
obtained as, PR i ________ .
. . A0 0 0 B
x® = U(Z(I)), A8 1 /
2 WOx(D 4 b o) O girglix(tnc:facnvanon
whereW® andb(® are the weight matrix and bias vector of the Input i u ?ur";’t of linear
linear transformation associated with #i& layer, and-() is the ac- , ransformation
tivation function. In this paper we employ sigmoid activation func- (a) Conventional DNN
tions [2]. The activation function of the last layér is a softmax
function as, 0000
o Ancillary network for
I ey )
2z Factorized layer class weight computation
al) = softmaz(zy)) = 672(”7 2) @)
, e n!
2on O
wherez'" is then' element of the output of the last layer agid O
is to then" element of vectog (D). i ©)
Context
2.2. Principlesof CA-DNN features
We have recently proposed to modify the structure of a conventional
DNN to make its parameters adaptive to the acoustic context. Fol-
lowing the ideas of committee machines [25, 26], we introduced a
CA-DNN, which is a DNN with one or several layers that are fac- =g
torized, meaning that they are decomposed in sub-layers that are
associated with different acoustic context classes. The output of a . _ _
factorized layer is obtained as the weighted sum of the contribution (b) Context adaptive DNN with ancillary network
of each sub-layer as, for context class weights computation
@ K () (i—1) ) Fig. 1. Schematic diagram of (a) a conventional DNN and (b) the
20 =3 (WX b)), (3 proposed context adaptive DNN with ti& layer replaced by a fac-
— N e . . .
k=1 @ torized layer. Note that the dotted boxes are included to emphasize
250

intermediate steps in the computation of the output of a hidden layer

0 ) ) o (i.e. linear transformation and activation function) and are not actual
whereW,” andb,” anday, are the weight matrix, bias vector and phigden Jayers.

class weight associated with th&" context class, respectively, and

K is the number of context classes considered. The class weighteights. It can thus realize fast adaptation if the weightsan be

vectora = [aa ... ax] characterizes the acoustic context of a givencomputed from a small amount of speech data.

utterance, which may depend on the task, e.g. the gender, speaker or In [20] we proposed to use context weights computed indepen-

acoustic environment (noise or reverberation). For exaneplean  dently of the recognizer. For example, we used posteriors obtained

be obtained as the posteriors derived from speaker or environmefftom GMM clustering of i-vectors as class weights. However, when

clustering. the context weights are computed independently of the CA-DNN,
Note that it is also equivalent to express a CA-DNN as a conthey may not represent the acoustic context in an optimal way with

ventional DNN whose parameters are obtained as the weighted sumsspect to ASR performance. In the next section we propose an ap-

of the parameters associated with each context class as, proach to obtain context weights and thus context class definitions
x optimized for ASR.
WO =S aw?,
k=1 ) 3. CA-DNN WITH JOINT TRAINING
K
b® = Z arb(”. 3.1. Ancillary network for classweight computation
k=1

Instead of inputting directly class weights to the factorized layer of
Equation (4) emphasizes that CA-DNN realizes the direct adaptatiothe CA-DNN [20], we introduce an ancillary network that computes
of the DNN parameters to the acoustic context given the context clasdass weights given context features. This ancillary network is equiv-
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alent to a gating network used for example in mixture of expertSNhereasif), 29, z,(ﬁn ands'? are then'” component of the vectors

models [25], except that its input consists of context features thatargi) , @) ,() 3nd6@ . The implementation of the proposed method

different from the input of the factorized layer. By interconnecting reql’Jires’thlst simple modifications of an existing DNN training im-

the ancillary network with the factorized layer, it becomes pOSSibleplementation.

to train both networks jointly using error backpropagation. Conse " \ye jnvestigate two types of activation functions for the output

quently we can obtain classes and class weights optimized for ASRyy o1 of the ancillary network, i.e. softmax and linear. The softmax

Figure 1-(b) is a schematic diagram of a CA-DNN with the pro-» e ation function ensures that the class weights sum up to 1. Im-

posed ancillary network for class weight computation. We call such,,qjng this constraint is in accordance to our previous experiments

network a CA-DNN with joint training (CA-DNN-JT). where we used Gaussian posteriors as class weights but it is not nec-

essary. Moreover, when using softmax activation, the gradient in

3.2. Joint training of CA-DNN and ancillary network Eq. (7) takes very small values because the derivative of the softmax
A a) () @) 1) ) () activation is often close to zero. In contrast, using a linear activation

Letusdenoteb® = {W'/,b'",... ., W, b ... Wb} goes not impose any constraint on the weights but may mitigate the

the parameters of the CA-DNN and byQ £ vanishing gradient problem of the softmax activation.

VO @ v ¢V the parameters of the ancillary

network, whereV ¥) andc?) are the weight matrix and bias vector, 4. RELATION WITH PREVIOUS WORKS

and J is the number of layers of the ancillary network. We can '

jointly train © and © by optimizing the same objective function, \ye have already mentioned in the introduction that CA-DNN is di-

J(©,2). We use here the cross entropy criterion. We employ thgectly related to cluster adaptive training [21-23] with the main dif-

stochastic gradient descent (SGD) with the error back-propagatiofrence originating from the class weight computation.

algorithm to compute the gradient of the network parameters, by ~ CA-DNN is also related to committee machines that distribute

back-propagating the error signals to both the main and the ancillare |earning among a number of expert networks and combine their

networks. outputs [25, 26]. In particular the mixture of experts model [28] also
employs a gating network to compute the weights associated with
3.2.1. Gradients w.r.t the CA-DNN parameters each expert. A similar approach has been investigated for speech
. . ._recognition [29]. These studies usually employ the same input fea-
The gradient of the parameters of a factorized layer can be Obta'ne{aresgfor the[ ex]pert networks and the éating n)étwork. In ouFr) work,
as, 9J(0,0) ‘ ‘ we employ context features that can represent the long-term acoustic
e I (xU=HT, context and that differ from the input speech features.
oW}’ 5 Finally, factorization of hidden layers of a DNN have also been
2J(0,9) @ ®) used recently for speaker adaptive training [12, 30, 31], to better ex-
T =aié"’, ploit training data over different tasks [32], or as an extension of
] by, ] multi-task learning for low resource ASR [33]. These approaches
whered is the back-propagated error that is expressed as, largely differ from the proposed CA-DNN as they do not perform a
PON ((W(””)TS““)) o U,(Z@). ©) linear interpolation of the different class parameters.
© is the Hadamard product and(z) is the derivative of the acti- 5. EXPERIMENTS

vation function w.r.t.z®. Equation (5) is similar to the expression
of the gradient for a conventional neural network [27] except fer th We carried out experiments using the AURORA4 [24] speech cor-
introduction of the weighting term;.. Moreover, Eq. (6) isidentical pus. AURORAA4 is a noisy version of WSJO 5k, which includes dif-
to the expression for a conventional DNN ktit’ should be calcu-  ferent types of noise. There are four evaluation sets, i.e., A (clean)
lated with Eq. (3) andW 1) should be calculated with Eq. (4) if B (six types of additive noises), C (clean with channel distortion),
layeri + 1 is factorized. D (six types of additive noises with channel distortion). All experi-
ments were performed using the multi-condition training data set of
AURORAA4. The training data set consists of 83 speakers and about
14 hours of data. Note that the training and testing conditions are
The gradient with respect to the ancillary network paramet@rs, relatively matched, i.e. the training data includes the same noise and
can be obtained with the chain rule as, channel conditions as the evaluation data but the SNRs of training
2J(0,Q)  9J(6,9) da data are 10-20 dB and those of evaluation data are 5-15 dB.

. )
13)9) 7] N
* 5.1. Settings

The gradient can thus be obtained with conventional error backprop-
agation but with the error signal at the output of the ancillary networkThe baseline acoustic model consists of a DNN with 5 hidden layers

3.2.2. Gradient w.r.t. the ancillary network parameters

expressed as, each with 1024 units per layer and 3042 output units correspond-
o ) A (D) ing to the HMM states. We used sigmoid activation functions for
9J(6,9)  _ 3 9J(0,Q) dzn’ Ozn @)  alhidden layers. The speech features consists of 24 log mel filter-
da — 92V 92 Oa bank coefficients appended with delta and acceleration coefficients.
) We employed 11 concatenated speech features as input to the DNN
=) (792 dimensions in total). The speech features were processed with
ZY) utterance level cepstral mean normalization, and further normalized
" using mean and variance normalization parameters calculated on the
= Z 5@ o, (9) training data.
- ) We trained the DNN using discriminative pre-training, and then
Z%?” fine-tuned it using the cross entropy criterion. For the fine tuning,
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Table 1. WER for the evaluation set of AURORA4 using bigram Table 2. WER for different position of the factorized layer using the
and trigram language models. The best results are highlighted wittigram language model. The best results are highlighted with bold

bold font. font.
bigram  trigram Factorized layer; 1 2 3 4 5
DNN 15.2 11.9 CA-DNN-JT (linear) 11.2 107 109 111 113
DNN + i-vect 14.3 11.3
CA-DNN (i = 1) 160 124
CA-DNN-JT (i =1, softmax) ~ 14.7 11.3 Table3. WER for the evaluation set of AURORAA4 using bigram and
CA-DNN-JT (i = 1, linear) 143 1.2 trigram language models for baseline DNN system, a system with i-

vectors auxiliary input features and the proposed CA-DNN-JT. The
best results are highlighted with bold font.
we used an initial learning rate of 0.3, a momentum of 0.9 and & A B C D Avg.
batch size of 128. The learning rate was gradually decreased whe."bi
h . g gram
the frame accuracy did not improve for a cross validation set.
o ; DNN 6.1 102 11.0 224 152
In addition to the speech features, we used i-vectors as contexty .
. : s . NN + i-vect 56 95 96 213 143
features. The i-vectors were obtained by training a GMM universal CADNN-JTG=2 near) 53 94 99 202 137
background model (UBM) of 512 dimensions. We then extracted i— =% . - . . .
vectors of 80 dimensions. The i-vectors were finally processed with trigram
LDA to reduce their size to 25 components, using the speaker labelsDNN 37 74 84 183 119
to train the LDA transformation. We used in this experimetter- DNN + i-vect _ 37 71 74 174 113
ance level i-vectorsomputed with Kaldi [34]. Note that since the _CA-DNN-JT (i =2,linear) 37 66 7.6 164 107
speech data contains noise and channel mismatch, the i-vectors may
also represent noise/channel characteristics in addition to speakers

characteristics. training degraded performance in this case. However, the proposed

For CA-DNN, we tested two approaches to obtain the class. , A L - o
weights. The first approach follows [20], where we used a GMM%A DNN-JT with linear output layer achieved a performance im

trained from the i-vectors to compute posteriors that are used as Claiﬁovement comparable with using I-vectors as auxiliary features,

- - e performance degraded when we used a softmax output layer,
weights. We used a GMM with 4 components. The second approac| s - . A
conzists of the proposed CA-DNN-J'IF'). For CA-DNN-JT thelci)r?puts obably because of the vanishing gradient as discussed in sub-
of the ancillary network are the utterance level i-vectors describegectlrorglsé'zh th its for diff t factorized | We ob
above. The ancillary network consists of a single hidden layer with ' 29'€ £ SNOWS the resulls for dilierent tactorized layers. Ve ob-
25 hidden units and sigmoid activation functions. The output IayePerVe that I_oetter performance could be ac_h|_eved when factorizing the
has 4 output units. We performed experiments with both softma)§econd, third or fourth layer. When factorizing the second layer, we

and linear output layers. The parameters of the CA-DNN and th&ould achieve a 10% relative improvement over our DNN baseline.

ancillary network are jointly trained using the procedure described th;_naIIy, Tabée 3 Sho"‘l’s detailed regu:ts for: the differednt test sets
in Section 3. In this paper, we only investigated the factorization of¥ith bigram and trigram language models. The proposed CA-DNN-
a single layer. JT improves performance over the DNN baseline in all conditions

; ; ; d outperforms i-vector auxiliary features except for set C (clean

For all experiments, we used both bi-gram and tri-gram Ianguag@r_' ; . >
models for decoding. In both cases, we used a language mod#fth channel mismatch). CA-DNN-JT appears especially efficient
' noisy conditions. Note that using i-vectors as auxiliary input fea-

weight scale of 15 and a beam value of 400. The results are evalf _ - : . :
uated in terms of word error rate (WER) for the evaluation set,  tUres performs bias compensation of the first layer. This may explain
why it performs better for compensating the channel mismatch of

the set C. Since CA-DNN realizes adaptation of the weight matri-
5.2. Results ces, both approaches could be complementary, and we will explore

Table 1 shows the WER for a conventional DNN, DNN with i-vector their combination in future work.

auxiliary features, CA-DNN with class weights obtained from i-

vector posteriors and the proposed CA-DNN-JT with softmax and 6. CONCLUSIONS
linear output layers . The results for CA-DNN were obtained when

factorizing the first layer (i.e.. = 1). Note that our baseline is | his paper we proposed an extension of the recently proposed CA-

comparable with other results reported on the task with a similag\ '\ introduced an ancillary network to compute context class

configuration [22]. However, it is slightly worse than the state-of-eights “and interconnected it with the CA-DNN to enable joint

b ¢ h ¢ d . dCMLLR : ional approaches for making DNN aware of the acoustic context
ecause we focus here on fast adaptation and C \ FeqUIres MOf, oy pioiting auxiliary information. For utterance-based unsuper-
than one utterance to compute the feature transformation parametey, ed adaptation on the AURORA4 task, the proposed CA-DNN-JT

From Table 1, we observe that using i-vector auxiliary features, cieved performance competitive with conventional approach that
achieves about 5 % relative improvement. CA-DNN without joint | ,cac'i_vectors as auxiliary input features.

1Al networks have the same number of hidden layers and hiddégs.un . In future work, we wil explore other configura}tions and topolo-
CA-DNNs have more parameters since they include a factorizietth layer. ~ 9i€S for the CA-DNN and ancillary network to achieve better context

Note that we confirmed in [20] that the performance improvemenugint ~ class representation [35] and to reduce the number of model param-
about by CA-DNN was not due to the increased number of parameter eters [11, 31].
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