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ABSTRACT

A reliable online speaking rate estimation tool is useful in
many domains, including speech recognition, speech therapy
intervention, speaker identification, etc. This paper proposes
an online speaking rate estimation model based on recurrent
neural networks (RNNs). Speaking rate is a long-term feature
of speech, which depends on how many syllables were spoken
over an extended time window (seconds). We posit that
since RNNs can capture long-term dependencies through the
memory of previous hidden states, they are a good match for
the speaking rate estimation task. Here we train a long short-
term memory (LSTM) RNN on a set of speech features that
are known to correlate with speech rhythm. An evaluation
on spontaneous speech shows that the method yields a higher
correlation between the estimated rate and the ground-truth
rate when compared to the state-of-the-art alternatives. The
evaluation on longitudinal pathological speech shows that
the proposed method can capture long-term and short-term
changes in speaking rate.

Index Terms— recurrent neural networks, speaking rate
estimation, clinical tool

1. INTRODUCTION

Speaking rate is an important quantity in automatic speech
recognition [1], speaker identification [2], speech modifica-
tion [3], emotion recognition [4], etc. It is also considered
as an index of the efficiency of articulatory movements over
time in applications involving dysarthric speech [5, 6]. As a
result, many intervention strategies in speech therapy involve
exercises related to speaking rate. However, in current clinical
practice, most speech language pathologists (SLPs) still use
stop watches to manually calculate rate. In addition to the
inefficiency of this practice, this method does not allow for
continuous estimation of speaking rate - especially for long
speech samples. This is problematic since some patients with
neurological conditions (e.g. Huntington’s disease) exhibit
irregular short-term changes in speaking rate. Moreover,
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some patients, such as those with Parkinson’s disease (PD)
tend to have atypical rate and rhythm. As a result, in clinical
practice, there exist a number of pacing strategies or rate
control methods (RCM), such as hand tapping, pacing boards,
and delayed auditory feedback [7]. However, patients require
extensive training on how to use these strategies. Having
a reliable online speaking rate estimation tool would allow
patients to easily monitor their speaking rate either during
clinical intervention or at home.

Some of the early methods for automatic speaking rate
estimation [8] [9] [10] aimed to automatically detect syllables
in speech by detecting maxima in a loudness function. More
recently, Wang and Narayanan proposed to use subband
spectral and temporal correlations with the aid of voicing
information to detect syllables [11]. Jong and Wempe showed
a simple syllable nuclei detector based on intensity and
voicing [12]. However, these methods all involve a peak
detection strategy. As a result, they may become less robust to
new data since heuristically defined thresholds are introduced
to select the peaks. Automatic speech recognition (ASR)
has also been used to estimate speaking rate. However, the
performance of ASR degrades for dysarthric speech with
increased deletion and insertion errors. Thus we attempt to
avoid the more difficult task of either detecting individual
syllables or using ASR. We posit that a statistical learning
approach to this problem is more reliable and robust. In [13],
we proposed a convex optimization based linear model for
speaking rate estimation. Moreover, we found that long-term
statistical features were more robust on spontaneous speech.
However, in [13] we used a combination of multiple acoustic
features which was not applicable in real time. In [14],
Faltlhauser et al. proposed an online speaking rate estimation
model based on neural networks. They used GMMs to first
separate data into three rate groups (fast, moderate, slow) and
built a neural network with the input of the likelihood values
generated by GMMs. However, like we have shown in [13],
the performance of this method is less satisfactory.

In this paper, we propose to use recurrent neural network
(RNN) for online speaking rate estimation. Recurrent neural
networks have recently achieved great success in acoustic
models [15] and language models [16] for automatic speech
recognition (ASR), feature enhancement for robust ASR [17],
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Fig. 1. Flowchart of feature extraction.

voice activity detection [18], etc. The main advantage of
RNN over a regular neural network is that the current output
not only depends on the current input but also depends
on previous inputs due to the recurrent connections within
hidden layers. In this way, the neural network has memory
of the hidden representation of early inputs and is able to
learn long dependencies among time series data. For the
speaking rate estimation task, the motivation to use the RNN
is that speaking rate will have longer time dependencies than
other speech representations (e.g. phoneme transition, voice
activity). In addition, our empirical studies show that the
RNN representation for speaking rate allows for a smaller and
simpler feature set when compared to our previous work in
[13].

Relation to previous work. The use of RNNs for speaking
rate has not been explored in the literature to the best of our
knowledge. Although neural networks (NN) have been used
to estimate speaking rate in [14], this model does not exploit
the longer-term dependencies that RNNs exploit. Moreover,
our algorithm requires training a single RNN, whereas the
work in [14] uses a sequential procedure that requires training
independent models for slow, moderate, and fast speech.
This work is also related to other automatic speaking rate
estimation methods [8] [12] [11]. However, all of the previous
methods only showed statistical results at the sentence level,
such as correlation, error rate, mean error, etc. While in
this paper, our estimation of speaking rate is processed every
1 second with 0.1 second shift and our results show online
changes in speaking rate. Finally, we also evaluate our
approach on longitudinal pathological speech - this has not
been done in previous work.

2. METHOD

2.1. Feature extraction

The speaking rate estimation system in Fig. 1 works as
follows. The analysis window of the rate estimation algorithm
is 1 second, with a 0.1 second shift. Features that are strongly
related to speech rhythm are calculated for every 1 second
frame. These features are described below.
Envelope modulation spectrum (EMS): The EMS is a
representation of the slow amplitude modulations in a signal.
It also reflects the distribution of energy in the amplitude
fluctuations across designated frequencies. The 1 second
speech signal is passed through a range of octave band filters,
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Fig. 2. Architecture of bi-directional recurrent neural
network.

after which the envelope is extracted from each individual
octave. From the envelope of each octave we extract the
following features 1) Peak Frequency 2) Peak Amplitude 3)
Energy from 3-6 Hz 4) Energy from 0-4 Hz 5) Energy from 4-
10 Hz 6) Energy ratio between 0-4 Hz band and 4-10 Hz band.
These features are primarily designed to capture the rhythmic
information from the speech signal [5]. The dimension of the
final EMS feature set is 60.
Mel-frequency cepstral coefficients (MFCC): The second
set of features are extracted from 13th order MFCCs (includ-
ing 0th order) and their first and second order derivatives -
the total number of features is 39. Then, from each row of
MFCCs, we calculate the mean, standard deviation, maxi-
mum value, skewness, kurtosis and mean absolute deviation
over the 1 second interval. The total dimension of MFCC
based feature is 39*6=234.

The feature sets are combined and normalized using the
mean and standard deviation of the training data; finally the
data are whitened and the dimension is reduced to 200 using
principal component analysis (PCA).

2.2. RNN training

We use the RNN as a regression model to predict speaking
rate. Different from standard neural network, RNNs use
feedback connections within hidden layers to store previ-
ous events in the form of hidden activations, which builds
memory into the network. We use a unidirectional RNN,
which only makes use of past samples, so as to ensure a
reasonable time delay (1 sec). In Fig. 2, we show an unfolded
unidirectional RNN for a sequence X. Here the input is
a time series of acoustic features X = [x1, ...,xt, ...,xT]
with length T. After training, the RNN computes the hidden
sequence H = [h1, ...,ht, ...,hT] and outputs the speaking
rate sequence y = [y1, ..., yy, ..., yT] by iterating from t = 1
to T as follows [15]:

−→
h t = fθ(Wx

−→
h
xt +W−→

h
−→
h
ht−1 + b−→

h
)

yt = w−→
h y

−→
h t + by

(1)

where fθ is the hidden layer activation function, W
x
−→
h

is the
weight matrices from input to forward hidden layers, W−→

h
−→
h

is the forward recurrent weight matrices, w−→
h y

is the weight
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Table 1. Comparative results
TF-Corr GMM-NN Praat RNN

Correlation
coefficient 0.57 0.32 0.59 0.73

Mean error 1.01 2.18 1.67 0.71
Stddev error 0.83 1.29 1.06 0.55

Error rate 0.34 0.51 0.40 0.21
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Fig. 3. Scatter plot of the estimated rates against the
transcribed rates on all 1-sec test samples. The red is a fitting
line of all samples. The black is a diagonal line.

vectors from forward hidden layers to output, b−→
h

and by are
bias terms (since output yt is a scalar b−→

h
is vector and by is

a scalar). These weights are learned during training. We use
long short-term memory (LSTM) nodes in the hidden layer,
which uses an input gate, output gate and forget gate to scale
the input to hidden nodes, output activation and recurrent cell
states respectively in order to avoid severe gradient vanishing
or exploding along time - this allows the network to learn
long-term dependencies during training [19]. It is reported in
[20] that LSTM can learn time dependencies as long as 1000
time steps. This is sufficient for our speaking rate estimation
task. Given sequences of training samples (with ground truth
speaking rate), we use the CURRENNT toolbox [21] to train
our RNN model since it provides a parallel training paradigm
that can speed up the training process.

3. EXPERIMENT

3.1. Evaluation on Switchboard spontaneous speech

The Switchboard corpus is a speech database that includes
several hundreds informal conversations recorded over the

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

10

11

Index of samples

S
p

ea
ki

n
g

 r
at

e 
(s

yl
la

b
le

s/
se

co
n

d
)

 

 

Estimated rate
Transcribed rate

Fig. 4. Line plot of the estimated rates against the transcribed
rates of 500 test samples.

telephone [22]. The International Computer Science Institute
(ICSI) Switchboard corpus is a subset of the original database
with phonetic transcriptions. There are 5564 speech spurts
from multiple speakers sampled at 8kHz, 16-bit. Each speech
sample includes a hand-corrected transcription with syllable
boundary information. We used 64% of the samples to train
the RNN, 16% for validation set, and 20% for testing.

The evaluation was based on a 1 second estimation
window with a 0.1 second shift. The speech samples in each
estimation window were analyzed using a 20ms Hamming
window with a 10ms frame shift. Thirteen-order MFCC fea-
tures, along with delta and delta-delta features, were extracted
from each frame. Six statistical features as mentioned in
Section 2 were calculated from MFCC for each 1 second
window. Moreover, a 60-dimensional EMS feature vector
was extracted from the 1-sec speech segment. To generate
the ground-truth speaking rate for each estimation window,
we calculated the number of syllables per second by using
the syllable boundary information from the labels. Silence
and non-speech segments were skipped.

The RNN has an input layer with 200 nodes; two hidden
layers, each with 64 bidirectional LSTM nodes; the output
was a scalar value approximating the speaking rate. The
training objective was to minimize the root mean square error
(RMSE) between the estimated speaking rate at the output of
the RNN and the ground-truth speaking rate. The weights
were randomly initialized using a uniform distribution be-
tween -0.1 and 0.1, which was empirically better than normal
distribution initialization. The learning rate was set to 3e-
6 and the maximum number of epochs was 100. Every
1 epoch the validation error was checked to see if better
performance was achieved. To avoid overfitting, the training
process stopped if there was no reduction in validation error
for more than 5 epochs.

We compared our results with three existing methods.
The first was described in [11]; we denoted it by ‘TF-Corr’.
We used the code that the authors made publicly available
for this method. The second method was described in [14].
We denoted it by ‘GMM-NN’ due to its structure. The
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Fig. 5. Results of speaking rate estimated on longitudinal speech. Blue line is the estimated rate on each 1 second speech with
a 0.1 second shift. The red line is the average speaking rate of each 10 seconds.

third method was a Praat script [12] for estimating rate - we
denoted this algorithm by ‘Praat’. More information about the
implementation of these methods can be found in our previous
paper [13]. For consistency, all algorithms were evaluated on
the same test set on 1 second windows with a 0.1 second shift.
Samples with a transcribed rate of zero were discarded in our
evaluation. In a real online system, these can be discarded
using a voice activity detection (VAD) algorithm. The results
are shown in Table 1. There were four metrics evaluated: the
correlation coefficient between the estimated speaking rate
and the transcribed speaking rate; the mean and standard
deviation of the absolute speaking rate error; the error rate,
computed as the average of |estimated rate−transcribed rate|

transcribed rate across
all samples in the test set. T-test was conducted between
our proposed method and the other 3 methods. All of the
resulting p-values were less than 0.0001, which indicated
that the improvement was statistically significant. In Fig.
3 and Fig. 4, we show the scatter plot as well as the
fitting lines of the estimated speaking rate by RNN against
the transcribed speaking rate. From the figures, we can
see a strong correlation between the estimated rates and the
transcribed rates.

3.2. Evaluation on longitudinal pathological speech

We also evaluate the speaking rate estimation algorithm on
pathological speech. Our speech sample is from a female
with a neurodegenerative syndrome called pallido-ponto-
nigral degeneration (PPND) [23]. She was followed longi-
tudinally at 6-month intervals over several years. In each
recording session, the speaker was asked to read a standard
passage, the grandfather passage, which was commonly used
in clinical practice. In the first stage, she exhibited mild signs
of dysarthria, including mild vocal instability, mild vocal
tremor and vocal flutter, slightly slow speaking rate, etc. In
the second and third stage, her speech symptoms became
more pronounced, including greatly reduced loudness, voice

tremor, more frequent vocal flutter, slower speaking rate, mild
imprecision of consonants, etc. In the last stage, she had
more difficulty in speaking and showed mixed dysarthrias,
with minimally hypokinetic and flaccid features, including
decreased intelligibility, very slow speaking rate, monopitch,
imprecise consonant production, general voice tremor and
voice flutter, breathy speaking voice with substantially re-
duced speech loudness. We estimated the speaking rate
for these passages individually and connected the results
together. The result is shown in Fig. 5. The estimation
was also based on 1 second interval with 0.1 second shift.
The red line represents a smooth rate based on a 10 second
moving-average filter. From the result, we can see that the
average speaking rate goes down from Stage 1 to Stage 4,
which corresponds to the description of speech characteristics
for each stage. We can also see that within each stage, the
speaking rate gradually decreases over time, which was likely
due to speaker fatigue.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed a recurrent neural network (RNN)
based speaking rate estimation method. In contrast to pre-
vious work, we used fewer long-term acoustic features and
provided an online estimate of the rate that depended on
past estimates due to the long-term dependencies in the
RNN. The evaluation on spontaneous speech revealed a
high correlation between the estimated speaking rate and the
ground-truth. We also evaluated the method on longitudinal
pathological speech. The results showed that the proposed
method can capture the decreasing trend of speaking rate
not only along different disease stages but also during each
individual session. Our future work includes testing the
performance of the method under different conditions and
implementing it on mobile devices, such as a smart phone
or a tablet, so that clinicians can use it in practice.
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