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ABSTRACT where the zero-mean complex random variabiés, n), X (k,n),
This paper develops a single-channel noise cancelatien filtthe  andV (k,n) are the STFTs of(t), z(¢), andv(t), respectively, at
short-time Fourier transform (STFT) domain by combining ub-  frequency birk € {0, 1, ..., K—1} and time frame:. The variance

space method and the optimal filtering technique via joiagdnal-  of Y(k,n) is

ization of the desired clean speech and noise signal ctoelaatri- 9

ces. This filter is shown to be flexible in controlling the caomise ¢y (k,n) = E[|Y (k,n)["] = ¢x(k,n) + ¢v (k,n), ®)
between the output signal-to-noise ratio (0SNR) and theuaof  \yhere ¢y (k,7) and ¢y (k, n) are the variances ok (k,n) and
speech distortion. Simulations are performed to justi§y/ phoperty V(k,n), respectively, which are defined in a similar way to

of this filter. by (k,n).
I ndex Terms—Noise_canceIation, noise reduction, speech en- By considering theV most recent successive time frames of the
hancement, STFT domain. observations as described in [9], we can rewrite (2) as
1. INTRODUCTION y(k,n) =[Y(k,n) Y(kn—1) - Y(k,n—N+1)]7
Noise is ubiquitous. In real-world applications of speeotcpssing =x(k,n) +v(k,n), 4

such as hands-free voice communication, teleconferenbiaring .
aids, smart phones, and VoIP, the existence of noise cae sigs  Wherex(k, n) andv(k, n) are also vectors containing thé most
nificant degradation of speech quality and impairment oéspeén- ~ €Cent successive time frames of the speech and noise, sigsa:c-

telligibility if the signal-to-noise ratio (SNR) is low. Tmitigate the ~ tively: We deduce the correlation matrix gk, n) as

noise effect, a widely used method is to pass the noisy sp=gohl S (kn) = E ik H (e
through a filter that can dramatically suppress the unwantése y(k,n) = [y( )y ( ’n)}
while keeping the desired speech relatively unchangeds filkér- =&, (k,n) + &, (k,n), (5)

ing process is called noise reduction, which has been anrtano
research topic in the field of speech processing [1-4]. Mdfioyte ~ where the superscript’ is the conjugate-transpose operator,

s have been devoted to this area over the last few decade8]{1-1and ®x(k,n) = FE [x(k:,n)xH(km)} and ®,(k,n) =
however, noise reduction remains an open problem primdti/to £ [v(k,n)v" (k,n)| are the correlation matrices of(k,n) and
its extreme difficulty. v(k,n), respectively. Theb, (k,n) matrix is assumed to be full

This paper is concerned with noise reduction using a single m rank. Then, the objective of noise reduction is to estinmté, n)
crophone. It develops a single-channel noise cancelattenifi the  from y(k,n).
STFT domain. This approach combines the subspace method and Using the well-known joint diagonalization technique [1fje
the optimal filtering technique through the use of joint diagliza-  two Hermitian matrice® (k, n) and®. (k, n) can be jointly diag-
tion of the clean speech and noise signal correlation nestidnd is  onalized as follows:
basically an extension of the method in [6, 7].

B (k,n)®x(k,n)B(k,n) = A(k,n), (6)
2. SIGNAL MODEL AND PROBLEM FORMULATION B (k, n)® (k, n)B(k, n) = Iy, 7
The noise reduction problem considered in this paper is éme-o
covering the signal of interest (or clean speecly), ¢ being the where
dlscrete-tlme index, from the noisy observation (micraphig- Ak, n) = diag [\ (k, 1), Aa(k,n),s o, A (ky )] ®)
nal) [2], [8]:
and
y(t) = z(t) +v(b), @
B(k,n) = [bi(k,n) ba(k,n) --- by(k,n)] 9)

wherew(t) is the unwanted additive noise, which is assumed to be
uncorrelated withe(¢). All signals are considered to be real, zero are the eigenvalue and eigenvector matrice® ot (k, n)®x (k, n),
mean, and broadband. _ _ _ andI y is the identity matrix of sizéV x N. In this paper, we assume
In the STFT domain, the signal model in (1) can be rewritten aghat the eigenvalues, (k, n), A2(k,n), .. ., An (k, n) are ordered in
_ such way thad) < Ai(k,n) < A2(k,n) < --- < An(k,n). So,
Y (k,n) = X(k,n) +V(k,n), ) Ai(k,n) and An (k,n) are the smallest and largest eigenvalues of

This work was supported in part by the NSFC “Distinguishedinp @+ ' (k, n) ®x(k, n), respectively. Note that the eigenvector matrix
Scientists Fund” under grant No. 61425005. B(k, n) is full rank but not necessarily orthogonal.
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3. LINEAR ESTIMATION AND PERFORMANCE
MEASURES

First, let us estimate the noise at the STFT subbiahy passing the
noisy signal at that subband through a complex linear filer,

Z(k,n) = 0" (k,n)y (k,n) = Xua(k,n) + Via(k,n),  (10)
where Z(k,n) is an estimate oV’ (k,n), h'(k,n) is a filter of
length NV, which is called the noise estimation filteX;q (k,n) =
h'7 (k,n)x(k,n) is the filtered desired signal, arid, (k,n)
h' (k,n)v(k,n) is the filtered noise signal. It follows then that
the variance oZ (k, n) is

¢Z(k7 n) = ¢de(k7 n) + ¢an (k7 n)7

wherepx,, (k,n) = h' (k,n)®x(k, n)h’(k,n) andev,, (k,n) =
W (k,n)® (k,n)h' (k,n).

Given the noise estimate(k, n), the estimate of the desired
speechX (k,n), is obtained as

(11)

X(k,n) =Y (k,n) — Z(k,n) = h (k,n)y(k,n), (12)

where

h(k,n) =i—h'(k,n) (13)
is the noise cancelation filter for the estimationXfk, n), with i
being the first column of v .

To assess the goodness of the noise cancelation filér,n),
we adopt two performance metrics: the SNR and the speedr-dist
tion index. The subband input SNR at frequency biis defined
as

. _ ¢X (k7 TL)
iSNR(k,n) = 7¢v(k’, )’ (14)
while the subband output SNR at frequency hiis given by
H
oSNR [h(k, )] = h™ (k,n)®x(k,n)h(k,n) (15)

h# (k,n)®y(k,n)h(k,n)’

The subband speech-distortion index is defined as [1], [11]

_ Ja [h(k7n)]
vsa [h(k,n)] = “ox(bin) (16)
where
Ja[n(k,n)] = E UX(k, n) — h' (k, n)x(k, n)ﬂ .

4. OPTIMAL NOISE ESTIMATION AND CANCELATION
FILTERS

From the linear filtering model given in (10), we define thepout
SNR associated with the noise estimation filiéfk, n) as

¢de (k7 n)
)

B ¢an(k7n
WY (k,n)®x(k,n)h'(k,n
W (k,n)®, (k,n)h'(k,n

0SNRz [I(k,n)]

~—

(18)

N

It can be checked that

Ai(k,n) < 0SNRz [0 (k,n)] < An(k,n), Vh'(k,n).  (19)

The best way to estimate the noise signal is by minimizing
oSNRz [h/(k, n)], since by doing so, the speech signal of interest
leftin Z(k,n) is minimal.

Let the noise estimation filteh'(k, ), be of the form:

P
h/(kvn) = Z/Bp(kvn)bp(kvn) = Bp(k,n)ﬁ(k,n), (20)

where

Bp(k,n) =[bi(k,n) ba(k,n) --- bp(k,n)] (21)

is a matrix of sizeV x P containing the eigenvectors corresponding
to the eigenvalued, (k,n), p=1,2,..., P, and
B(k,n) = [Bi(k,n) Ba(k,n) - Br(k,n)]" #0

is an arbitrary complex-valued vector of length

If A1(k,n) is of multiplicity P*, i.e., \1(k,n) = Xa(k,n)
--- = Ap(k,n), it can be checked that the filter given in (20) mini-
mizesoSNRz [h'(k,n)]. As a matter of fact, we have

3o Ap (ks ) | Bp (K, )|
> 1B (k)
=\ (k, TL).

(22)

oSNRz [b'(k,n)] =

(23)

So, the output SNRSNR  [h'(k, n)], is always minimized regard-
less of the value of th8(k, n) vector involved. However, the choice
of B(k,n) plays an important role on the noise estimate, and con-
sequently, the speech estimate. In order to find the opiiitiln)
vector, let us define the MSE criterion between the desireldeati-
mated signals:

Jh(k,n)] = E UX(k:, n) — hH(km)y(k,n)ﬂ . (24)
Using (17) and defining
Jih(k,n)] = E UhH(k,n)v(k,n)ﬂ : (25)
we can rewrite (24) as
J[h(k,n)] = Jq [b(k,n)] + J: [h(k,n)], (26)

= ¢v (k,n) — B" (k,n)BE (k,n) @y (k, n)i—
i"®, (k,n)Bp(k,n)B(k,n) + B (k,n)B(k,n)+
B (k,n)Ap(k,n)B(k,n),
where
Ap(k,n) = diag [M(k,n), Aa(k,n),..., Ap(k,n)]
= A1 (k,n)Ip (27)

andIp is the P x P identity matrix.

Now, the optimal3(k,n) vector can be found by minimizing
J [h(k,n)], Ja [h(k,n)], or J: [h(k,n)]. For instance, minimizing
Jy [h(k,n)], we can find the optimaB(k, n) as

Bo(k,n) = BE (k,n)®, (k,n)i
= Ap' (k,n)BE (k,n)®x(k, n)i,

(28)

lin practice, we may consider the® smallest eigenvalues of
B! (k1) e (K, ).
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Substituting (28) into (20) and (13), we obtain the optimaike es-
timation and cancelation filters, respectively,

b, (k,n) = Bp(k,n)BE (k,n)®. (k,n)i (29)
=Bp(k,n)AR" (k,n)BE (k,n)®x(k,n)i,
and
ho(k,n) =i—Bp(k,n)BE (k,n)®(k,n)i. (30)

Note that if P = N, we haveh) (k,n) = i. In this caseh, (k,n) =
0. So, the noise is completely nulled out.
5. PERFORMANCE ANALYSIS
It can be checked that
B (k,n)

BY_,(k,n) ] =2, (k.n),
(31)

[ Bp(k,n) By_p(k,n) | {

where

BN*P(kan) = [bPJrl(k?n) bP+2(k7n) bN(kan)]'

(32)
Applying (31) to (30), one can obtain
h,(k,n) = Bn_p(k,n)BR_p(k,n)®,(k,n)i.  (33)
Then, substituting (33) into (15), we can get the output SNR:
Soapa [ @y (k)b (k) Ay (k)
Sopepia i@y (k,n)by (k,n)[?

oSNR [hy (k,n)] =
(34)

It is observed from (34) that the output SNR increases with
WhenP = N — 1, we obtain the maximum output SNR, which
isAn(k,n).

Substituting (30) into (16), one can write the subband dpeec
distortion index as

S Ap(k, ) [iT7 @y (k, )by (K, n)|
(f)x(k,”ﬂ,) ’

Itis clearly seen that the speech-distortion index is a rtamio non-
decreasing function aP. Now, if the rank of the® (k, n) matrix
is equal toV — P, we have\,(k,n) =0,p=1,2,..., P. So, we
havevgq [ho(k,n)] = 0. Consequently, the optimal filtér, (k, n)
is also a distortionless filter in this case.

Vsd [ho(k,n)] =

(35)

6. SIMULATIONS

In this section, we examine the performance of the optim@eno
cancelation filter in (30) through simulations. The clearesgh is
taken from the TIMIT database [12]. Note that we only takettz

speech signals from one male (MSVS0) and one female (FKSRO)

speakers from that database. The sampling rate consideitbdsi
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Fig. 1. Performance oh,(k,n) and the traditional Wiener filter in
white noise as a function aP and N: (a) oSNR, (b)usa, and (c)
PESQ score. The input SNR1§ dB.

128-point FFT is then used to transform every frame from titoe
main to STFT domain. In each STFT subband, the noise carmelat
filter given in (30) is computed and applied to the noisy STBé&fe
ficients. The overlap-add technique is finally used to tramsfthe
noise reduced STFT coefficients into the time domain.

To compute the optimal noise cancelation filter in (30), weche
to know the two matrice®x(k,n) and®.(k,n). In practice, one
has to apply a noise estimation algorithm to obtain the netiststic
characteristic. However, in order to avoid the estimateresf the
noise statistic characteristic and focus on the noise teduperfor-
mance of the proposed filter, we assume the noise signal feas be
known in our simulations, and compute the correlation roegidi-
rectly from the noisy and noise signals using the followiegur-
sions:

By (k,n) = oy ®y (k,n —1) + (1 — o)y (k,n)y" (k,n), (36)

~

simulation is8 kHz. So, the clean signals from the TIMIT database ®v(k,n) = aw®y(k,n — 1) + (1 — a,)v(k,n)v" (k,n), (37)

are downsampled fron6 kHz to 8 kHz. Noise is then added into
the speech signal to control the input SNR. We consider tpesy
of noise: white Gaussian and babble signal recorded in a NaWw Y
Stock Exchange (NYSE) room.

To implement the noise cancelation filter, we divide the yois
signal into short-time frames with a frame length of 128 skasip
(16 ms). The overlapping between neighboring framegig. A

wherea, anda, are forgetting factors. We take, = «,, for sim-
plicity in our experiments. Then the clean speech cor@ama-
trix ®.(k,n) can be obtained a®y (k,n) — ®,(k,n). To make
sure@x(k, n) is positive semidefinite, we apply the eigenvalue de-
composition to@x(k, n) and force all the very small eigenvalues to
Zeros.
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son is that there is not much correlation between STFT caefiis
from far-distant frames. Besides, the estimate error ofctireela-
tion matrices may increase witki, which eventually translates into
performance degradation. FoF = 4, 6 and8, the noise cancela-
tion filter h, (k, n) can achieve a PESQ score higher than that of the
traditional Wiener filter if the value aP is properly chosen.

The second simulation is performed in a real reverberanteoffi
room. The reverberation tim&s, of this room is approximately
0.24 s. Aloudspeaker is placed in the room to play back some speech
signals from the TIMIT database. A microphone is used tonegco
the signal at a sampling rate 8fkHz. To make the simulation re-
peatable and also for the ease of performance evaluat®mibulse
response from the loudspeaker to the microphone is meaftsed
Convolution between the measured impulse response anijtted-s
s taken from the TIMIT database (again, from the speakers ${8V
and FKSRO) is performed. This convolved speech is used as the
“clean” speech in our simulation. Either white Gaussian MSE
noise is then added to control the input SNR to be 10 dB. Based o
the previous simulation, we sé& = 6 and investigate the impact
of P on the performance. Figure 2 plots the output SNR, speech-

distortion index, and PESQ score, all as functiong>obf both the
noise cancelation filteh, (k, n) and the traditional noise reduction
Wiener gain. As seen, both the output SNR and the speeabrtitist
index of the noise cancelation filthy, (k, n) increase withP, which,
again, coincides with the theoretical analysis. The PES@esuf the
noise cancelation filteh, (k, n) depends on the value ¢f. When
the value ofP is properly chosen, the noise cancelation filter has a
better PESQ score than the traditional Wiener gain.

PESQ

7. CONCLUSIONS

This paper developed a noise cancelation approach to sihgienel
noise reduction in the STFT domain. It first obtains an edenod
the noise in each STFT subband and then subtracts the ndise es
mate from the noisy STFT coefficients to achieve noise reofoict
To obtain a good estimate of the noise, an optimal noise astim
tion filter was developed, which basically combines the skathwn
subspace method and the optimal filtering technique vid ghago-
nalization of the clean speech and noise signal correlatiatnices.
The optimal noise cancelation filter is then constructechftbe op-
timal noise estimation filter. Some theoretical analysis pavided

to show the impact of the order of the noise subspace on ths noi

Fig. 2. Performance oh,(k,n) and the traditional Wiener filter in
white and NYSE noises as a function Bf (a) oSNR, (b)usq, and
(c) PESQ score. The input SNR16 dB andN = 6.

For ease of performance presentation, we use the long-tilire f
band output SNR and speech-distortion index as the perfarena
measures, which are defined as

2
0SNR= %, (38)  reduction performance. Simulations were performed in botide-
m ) al and a real room environments. The results demonstrasditl
ot — E{[z(t) — za(t)]’} (39) optimal noise cancelation filter can yield larger output St bet-
° Elz2(t)] ’ ter PESQ score than the popularly used Wiener gain if thepsues

parameter is properly chosen.
wherex¢4 (t) andv.n (t) are the time-domain counterparts of the en-

hanced speech and residual noise, respectively. 8. RELATION TO PRIOR WORK

In the first simulation, we consider the case with white Gausqp this paper, we developed a single-channel noise carmelatthe
sian noise. The performance as a function of the paranietgith  STFT domain, which is basically an extension of the methd6, i
different values ofV is plotted in Fig. 1. For the purpose of com- yjith more comprehensive theoretical analysis and morebiléyi
parison, we also plotted the results of the traditional Wiegain, iy controlling the tradeoff between the output SNR and spetis-
Hw(k,n) = ¢x(k,n)/py (k,n) [11], where bothpx (k,n) and  tortion for better speech quality improvement. This meticodh-
¢y (k,n) are computed in the same way as described previously. pines the subspace method [15, 16] and the optimal filteg-t
~Itcan be seen that both the output SNR and speech-distortiopique [1, 2, 8] through the use of joint diagonalization [1D,18] of
index with a specified value oV increase withP. This coincides  the clean speech and noise correlation matrices. Becaube ofe
with the theoretical analysis in Section 5. In contrast,”fESQ s-  of the joint diagonalization, this algorithm can deal witbtih white
core does not bear a monotonic relationship witivhen the value  and colored noise. It can also achieve a distortionlessiati of the
of NV is large. For example, wittV' = 8, the PESQ score increas- clean speech if the speech correlation matrix is rank-aeficiSim-
es with P first and then decreases. It is also seen that the maximumjation results showed that the developed algorithm caieeera

PESQscore folV = 8is smaller than that folV = 6. This indicates  higher PESQ score than the widely used Wiener filter in mastsa
that the filter lengthV should not be too large. The underlying rea-
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