
A SINGLE-CHANNEL NOISE CANCELATION FILTER IN THE
SHORT-TIME-FOURIER-TRANSFORM DOMAIN

Xianghui Wang1, Jacob Benesty2, and Jingdong Chen1

1 CIAIC and School of Marine Science and Technology 2INRS-EMT, University of Quebec
Northwestern Polytechnical University 800 de la Gauchetiere Ouest, Suite 6900

Xi’an, Shaanxi 710072, China QC H5A 1K6, Canada

ABSTRACT
This paper develops a single-channel noise cancelation filter in the
short-time Fourier transform (STFT) domain by combining the sub-
space method and the optimal filtering technique via joint diagonal-
ization of the desired clean speech and noise signal correlation matri-
ces. This filter is shown to be flexible in controlling the compromise
between the output signal-to-noise ratio (oSNR) and the amount of
speech distortion. Simulations are performed to justify the property
of this filter.

Index Terms—Noise cancelation, noise reduction, speech en-
hancement, STFT domain.

1. INTRODUCTION

Noise is ubiquitous. In real-world applications of speech processing
such as hands-free voice communication, teleconferencing, hearing
aids, smart phones, and VoIP, the existence of noise can cause sig-
nificant degradation of speech quality and impairment of speech in-
telligibility if the signal-to-noise ratio (SNR) is low. Tomitigate the
noise effect, a widely used method is to pass the noisy speechsignal
through a filter that can dramatically suppress the unwantednoise
while keeping the desired speech relatively unchanged. This filter-
ing process is called noise reduction, which has been an important
research topic in the field of speech processing [1–4]. Many effort-
s have been devoted to this area over the last few decades [1–18];
however, noise reduction remains an open problem primarilydue to
its extreme difficulty.

This paper is concerned with noise reduction using a single mi-
crophone. It develops a single-channel noise cancelation filter in the
STFT domain. This approach combines the subspace method and
the optimal filtering technique through the use of joint diagonaliza-
tion of the clean speech and noise signal correlation matrices and is
basically an extension of the method in [6,7].

2. SIGNAL MODEL AND PROBLEM FORMULATION

The noise reduction problem considered in this paper is one of re-
covering the signal of interest (or clean speech)x(t), t being the
discrete-time index, from the noisy observation (microphone sig-
nal) [2], [8]:

y(t) = x(t) + v(t), (1)

wherev(t) is the unwanted additive noise, which is assumed to be
uncorrelated withx(t). All signals are considered to be real, zero
mean, and broadband.

In the STFT domain, the signal model in (1) can be rewritten as

Y (k, n) = X(k, n) + V (k, n), (2)
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where the zero-mean complex random variablesY (k, n), X(k, n),
andV (k, n) are the STFTs ofy(t), x(t), andv(t), respectively, at
frequency bink ∈ {0, 1, . . . ,K−1} and time framen. The variance
of Y (k, n) is

φY (k, n) = E
[
|Y (k, n)|2

]
= φX(k, n) + φV (k, n), (3)

whereφX(k, n) and φV (k, n) are the variances ofX(k, n) and
V (k, n), respectively, which are defined in a similar way to
φY (k, n).

By considering theN most recent successive time frames of the
observations as described in [9], we can rewrite (2) as

y(k, n) = [ Y (k, n) Y (k, n− 1) · · · Y (k, n−N + 1) ]T

= x(k, n) + v(k, n), (4)

wherex(k, n) andv(k, n) are also vectors containing theN most
recent successive time frames of the speech and noise signal, respec-
tively. We deduce the correlation matrix ofy(k, n) as

Φy(k, n) = E
[
y(k, n)yH(k, n)

]

= Φx(k, n) +Φv(k, n), (5)

where the superscriptH is the conjugate-transpose operator,
and Φx(k, n) = E

[
x(k, n)xH(k, n)

]
and Φv(k, n) =

E
[
v(k, n)vH(k, n)

]
are the correlation matrices ofx(k, n) and

v(k, n), respectively. TheΦv(k, n) matrix is assumed to be full
rank. Then, the objective of noise reduction is to estimateX(k, n)
from y(k, n).

Using the well-known joint diagonalization technique [10], the
two Hermitian matricesΦx(k, n) andΦv(k, n) can be jointly diag-
onalized as follows:

B
H(k, n)Φx(k, n)B(k, n) = Λ(k, n), (6)

B
H(k, n)Φv(k, n)B(k, n) = IN , (7)

where

Λ(k, n) = diag [λ1(k, n), λ2(k, n), . . . , λN(k, n)] (8)

and

B(k, n) = [ b1(k, n) b2(k, n) · · · bN (k, n) ] (9)

are the eigenvalue and eigenvector matrices ofΦ−1
v (k, n)Φx(k, n),

andIN is the identity matrix of sizeN×N . In this paper, we assume
that the eigenvaluesλ1(k, n), λ2(k, n), . . ., λN(k, n) are ordered in
such way that0 ≤ λ1(k, n) ≤ λ2(k, n) ≤ · · · ≤ λN (k, n). So,
λ1(k, n) andλN (k, n) are the smallest and largest eigenvalues of
Φ−1

v (k, n)Φx(k, n), respectively. Note that the eigenvector matrix
B(k, n) is full rank but not necessarily orthogonal.
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3. LINEAR ESTIMATION AND PERFORMANCE
MEASURES

First, let us estimate the noise at the STFT subbandk by passing the
noisy signal at that subband through a complex linear filter,i.e.,

Z(k, n) = h
′H(k, n)y(k, n) = Xfd(k, n) + Vfn(k, n), (10)

whereZ(k, n) is an estimate ofV (k, n), h′(k, n) is a filter of
lengthN , which is called the noise estimation filter,Xfd(k, n) =
h′H(k, n)x(k, n) is the filtered desired signal, andVfn(k, n) =
h′H(k, n)v(k, n) is the filtered noise signal. It follows then that
the variance ofZ(k, n) is

φZ(k, n) = φXfd
(k, n) + φVfn

(k, n), (11)

whereφXfd
(k, n) = h′H(k, n)Φx(k, n)h

′(k, n) andφVfn
(k, n) =

h′H(k, n)Φv(k, n)h
′(k, n).

Given the noise estimate,Z(k, n), the estimate of the desired
speech,X(k, n), is obtained as

X̂(k, n) = Y (k, n)− Z(k, n) = h
H(k, n)y(k, n), (12)

where

h(k, n) = i− h
′(k, n) (13)

is the noise cancelation filter for the estimation ofX(k, n), with i

being the first column ofIN .
To assess the goodness of the noise cancelation filter,h(k, n),

we adopt two performance metrics: the SNR and the speech distor-
tion index. The subband input SNR at frequency bink is defined
as

iSNR(k, n) =
φX(k, n)

φV (k, n)
, (14)

while the subband output SNR at frequency bink is given by

oSNR [h(k, n)] =
hH(k, n)Φx(k, n)h(k, n)

hH(k, n)Φv(k, n)h(k, n)
. (15)

The subband speech-distortion index is defined as [1], [11]

υsd [h(k, n)] =
Jd [h(k, n)]

φX(k, n)
, (16)

where

Jd [h(k, n)] = E

[∣∣∣X(k, n)− h
H(k, n)x(k, n)

∣∣∣
2
]
. (17)

4. OPTIMAL NOISE ESTIMATION AND CANCELATION
FILTERS

From the linear filtering model given in (10), we define the output
SNR associated with the noise estimation filterh′(k, n) as

oSNRZ

[
h
′(k, n)

]
=

φXfd
(k, n)

φVfn
(k, n)

=
h′H(k, n)Φx(k, n)h

′(k, n)

h′H(k, n)Φv(k, n)h′(k, n)
. (18)

It can be checked that

λ1(k, n) ≤ oSNRZ

[
h
′(k, n)

]
≤ λN (k, n), ∀h′(k, n). (19)

The best way to estimate the noise signal is by minimizing
oSNRZ [h′(k, n)], since by doing so, the speech signal of interest
left in Z(k, n) is minimal.

Let the noise estimation filter,h′(k, n), be of the form:

h
′(k, n) =

P∑

p=1

βp(k, n)bp(k, n) = BP (k, n)β(k, n), (20)

where

BP (k, n) = [ b1(k, n) b2(k, n) · · · bP (k, n) ] (21)

is a matrix of sizeN ×P containing the eigenvectors corresponding
to the eigenvaluesλp(k, n), p = 1, 2, . . . , P , and

β(k, n) = [ β1(k, n) β2(k, n) · · · βP (k, n) ]
T 6= 0 (22)

is an arbitrary complex-valued vector of lengthP .
If λ1(k, n) is of multiplicity P 1, i.e.,λ1(k, n) = λ2(k, n) =

· · · = λP (k, n), it can be checked that the filter given in (20) mini-
mizesoSNRZ [h′(k, n)]. As a matter of fact, we have

oSNRZ

[
h
′(k, n)

]
=

∑P

p=1
λp(k, n) |βp(k, n)|

2

∑P

p=1
|βp(k, n)|

2
(23)

= λ1(k, n).

So, the output SNR,oSNRZ [h′(k, n)], is always minimized regard-
less of the value of theβ(k, n) vector involved. However, the choice
of β(k, n) plays an important role on the noise estimate, and con-
sequently, the speech estimate. In order to find the optimalβ(k, n)
vector, let us define the MSE criterion between the desired and esti-
mated signals:

J [h(k, n)] = E

[∣∣∣X(k, n)− h
H(k, n)y(k, n)

∣∣∣
2
]
. (24)

Using (17) and defining

Jr [h(k, n)] = E

[∣∣∣hH(k, n)v(k, n)
∣∣∣
2
]
, (25)

we can rewrite (24) as

J [h(k, n)] = Jd [h(k, n)] + Jr [h(k, n)] , (26)

= φV (k, n)− β
H(k, n)BH

P (k, n)Φv(k, n)i−

i
T
Φv(k, n)BP (k, n)β(k, n) + β

H(k, n)β(k, n)+

β
H(k, n)ΛP (k, n)β(k, n),

where

ΛP (k, n) = diag [λ1(k, n), λ2(k, n), . . . , λP (k, n)]

= λ1(k, n)IP (27)

andIP is theP × P identity matrix.
Now, the optimalβ(k, n) vector can be found by minimizing

J [h(k, n)], Jd [h(k, n)], or Jr [h(k, n)]. For instance, minimizing
Jr [h(k, n)], we can find the optimalβ(k, n) as

βo(k, n) = B
H
P (k, n)Φv(k, n)i (28)

= Λ
−1

P (k, n)BH
P (k, n)Φx(k, n)i,

1In practice, we may consider theP smallest eigenvalues of
Φ

−1
v (k, n)Φx(k, n).
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Substituting (28) into (20) and (13), we obtain the optimal noise es-
timation and cancelation filters, respectively,

h
′

o(k, n) = BP (k, n)B
H
P (k, n)Φv(k, n)i (29)

= BP (k, n)Λ
−1

P (k, n)BH
P (k, n)Φx(k, n)i,

and

ho(k, n) = i−BP (k, n)B
H
P (k, n)Φv(k, n)i. (30)

Note that ifP = N , we haveh′

o(k, n) = i. In this case,ho(k, n) =
0. So, the noise is completely nulled out.

5. PERFORMANCE ANALYSIS

It can be checked that

[
BP (k, n) BN−P (k, n)

] [ BH
P (k, n)

BH
N−P (k, n)

]
= Φ

−1
v (k, n),

(31)
where

BN−P (k, n) = [ bP+1(k, n) bP+2(k, n) · · · bN (k, n) ] .
(32)

Applying (31) to (30), one can obtain

ho(k, n) = BN−P (k, n)B
H
N−P (k, n)Φv(k, n)i. (33)

Then, substituting (33) into (15), we can get the output SNR:

oSNR [ho(k, n)] =

∑N

p=P+1

∣∣iHΦv(k, n)bp(k, n)
∣∣2 λp(k, n)

∑N

p=P+1
|iHΦv(k, n)bp(k, n)|

2
.

(34)

It is observed from (34) that the output SNR increases withP .
WhenP = N − 1, we obtain the maximum output SNR, which
is λN (k, n).

Substituting (30) into (16), one can write the subband speech-
distortion index as

υsd [ho(k, n)] =

∑P

p=1
λp(k, n)

∣∣iHΦv(k, n)bp(k, n)
∣∣2

φX(k, n)
. (35)

It is clearly seen that the speech-distortion index is a monotonic non-
decreasing function ofP . Now, if the rank of theΦx(k, n) matrix
is equal toN − P , we haveλp(k, n) = 0, p = 1, 2, . . . , P . So, we
haveυsd [ho(k, n)] = 0. Consequently, the optimal filterho(k, n)
is also a distortionless filter in this case.

6. SIMULATIONS

In this section, we examine the performance of the optimal noise
cancelation filter in (30) through simulations. The clean speech is
taken from the TIMIT database [12]. Note that we only take allthe
speech signals from one male (MSVS0) and one female (FKSR0)
speakers from that database. The sampling rate considered in this
simulation is8 kHz. So, the clean signals from the TIMIT database
are downsampled from16 kHz to 8 kHz. Noise is then added into
the speech signal to control the input SNR. We consider two types
of noise: white Gaussian and babble signal recorded in a New York
Stock Exchange (NYSE) room.

To implement the noise cancelation filter, we divide the noisy
signal into short-time frames with a frame length of 128 samples
(16 ms). The overlapping between neighboring frames is75%. A
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Fig. 1. Performance ofho(k, n) and the traditional Wiener filter in
white noise as a function ofP andN : (a) oSNR, (b)υsd, and (c)
PESQ score. The input SNR is10 dB.

128-point FFT is then used to transform every frame from timedo-
main to STFT domain. In each STFT subband, the noise cancelation
filter given in (30) is computed and applied to the noisy STFT coef-
ficients. The overlap-add technique is finally used to transform the
noise reduced STFT coefficients into the time domain.

To compute the optimal noise cancelation filter in (30), we need
to know the two matricesΦx(k, n) andΦv(k, n). In practice, one
has to apply a noise estimation algorithm to obtain the noisestatistic
characteristic. However, in order to avoid the estimate error of the
noise statistic characteristic and focus on the noise reduction perfor-
mance of the proposed filter, we assume the noise signal has been
known in our simulations, and compute the correlation matrices di-
rectly from the noisy and noise signals using the following recur-
sions:

Φ̂y(k, n) = αyΦ̂y(k, n− 1) + (1− αy)y(k, n)y
H(k, n), (36)

Φ̂v(k, n) = αvΦ̂v(k, n− 1) + (1− αv)v(k, n)v
H(k, n), (37)

whereαy andαv are forgetting factors. We takeαy = αv for sim-
plicity in our experiments. Then the clean speech correlation ma-
trix Φ̂x(k, n) can be obtained aŝΦy(k, n) − Φ̂v(k, n). To make
sureΦ̂x(k, n) is positive semidefinite, we apply the eigenvalue de-
composition toΦ̂x(k, n) and force all the very small eigenvalues to
zeros.
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Fig. 2. Performance ofho(k, n) and the traditional Wiener filter in
white and NYSE noises as a function ofP : (a) oSNR, (b)υsd, and
(c) PESQ score. The input SNR is10 dB andN = 6.

For ease of performance presentation, we use the long-time full-
band output SNR and speech-distortion index as the performance
measures, which are defined as

oSNR=
E[x2

fd(t)]

E[v2rn(t)]
, (38)

υsd =
E
{
[x(t)− xfd(t)]

2
}

E[x2(t)]
, (39)

wherexfd(t) andvrn(t) are the time-domain counterparts of the en-
hanced speech and residual noise, respectively.

In the first simulation, we consider the case with white Gaus-
sian noise. The performance as a function of the parameterP with
different values ofN is plotted in Fig. 1. For the purpose of com-
parison, we also plotted the results of the traditional Wiener gain,
HW(k, n) = φX(k, n)/φY (k, n) [11], where bothφX(k, n) and
φY (k, n) are computed in the same way as described previously.

It can be seen that both the output SNR and speech-distortion
index with a specified value ofN increase withP . This coincides
with the theoretical analysis in Section 5. In contrast, thePESQ s-
core does not bear a monotonic relationship withP when the value
of N is large. For example, withN = 8, the PESQ score increas-
es withP first and then decreases. It is also seen that the maximum
PESQ score forN = 8 is smaller than that forN = 6. This indicates
that the filter lengthN should not be too large. The underlying rea-

son is that there is not much correlation between STFT coefficients
from far-distant frames. Besides, the estimate error of thecorrela-
tion matrices may increase withN , which eventually translates into
performance degradation. ForN = 4, 6 and8, the noise cancela-
tion filterho(k, n) can achieve a PESQ score higher than that of the
traditional Wiener filter if the value ofP is properly chosen.

The second simulation is performed in a real reverberant office
room. The reverberation timeT60 of this room is approximately
0.24 s. A loudspeaker is placed in the room to play back some speech
signals from the TIMIT database. A microphone is used to record
the signal at a sampling rate of8 kHz. To make the simulation re-
peatable and also for the ease of performance evaluation, the impulse
response from the loudspeaker to the microphone is measuredfirst.
Convolution between the measured impulse response and the signal-
s taken from the TIMIT database (again, from the speakers MSVS0
and FKSR0) is performed. This convolved speech is used as the
“clean” speech in our simulation. Either white Gaussian or NYSE
noise is then added to control the input SNR to be 10 dB. Based on
the previous simulation, we setN = 6 and investigate the impact
of P on the performance. Figure 2 plots the output SNR, speech-
distortion index, and PESQ score, all as functions ofP , of both the
noise cancelation filterho(k, n) and the traditional noise reduction
Wiener gain. As seen, both the output SNR and the speech-distortion
index of the noise cancelation filterho(k, n) increase withP , which,
again, coincides with the theoretical analysis. The PESQ score of the
noise cancelation filterho(k, n) depends on the value ofP . When
the value ofP is properly chosen, the noise cancelation filter has a
better PESQ score than the traditional Wiener gain.

7. CONCLUSIONS

This paper developed a noise cancelation approach to single-channel
noise reduction in the STFT domain. It first obtains an estimate of
the noise in each STFT subband and then subtracts the noise esti-
mate from the noisy STFT coefficients to achieve noise reduction.
To obtain a good estimate of the noise, an optimal noise estima-
tion filter was developed, which basically combines the well-known
subspace method and the optimal filtering technique via joint diago-
nalization of the clean speech and noise signal correlationmatrices.
The optimal noise cancelation filter is then constructed from the op-
timal noise estimation filter. Some theoretical analysis was provided
to show the impact of the order of the noise subspace on the noise
reduction performance. Simulations were performed in bothan ide-
al and a real room environments. The results demonstrated that the
optimal noise cancelation filter can yield larger output SNRand bet-
ter PESQ score than the popularly used Wiener gain if the subspace
parameter is properly chosen.

8. RELATION TO PRIOR WORK

In this paper, we developed a single-channel noise cancelation in the
STFT domain, which is basically an extension of the method in[6,7]
with more comprehensive theoretical analysis and more flexibility
in controlling the tradeoff between the output SNR and speech dis-
tortion for better speech quality improvement. This methodcom-
bines the subspace method [15, 16] and the optimal filtering tech-
nique [1,2,8] through the use of joint diagonalization [10,17,18] of
the clean speech and noise correlation matrices. Because ofthe use
of the joint diagonalization, this algorithm can deal with both white
and colored noise. It can also achieve a distortionless estimate of the
clean speech if the speech correlation matrix is rank-deficient. Sim-
ulation results showed that the developed algorithm can achieve a
higher PESQ score than the widely used Wiener filter in most cases.
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