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ABSTRACT

This paper considers acoustic beamforming for noise robust auto-
matic speech recognition (ASR). A beamformer attenuates back-
ground noise by enhancing sound components coming from a
direction specified by a steering vector. Hence, accurate steer-
ing vector estimation is paramount for successful noise reduction.
Recently, a beamforming approach was proposed that employs time-
frequency masks. In the speech recognition system we submitted to
the CHiME-3 Challenge, we employed a new form of this approach
that uses a speech spectral model based on a complex Gaussian
mixture model (CGMM) to estimate the time-frequency masks and
the steering vector without providing technical details. This pa-
per elaborates on this technique and examines its effectiveness for
ASR. Experimental results show that the CGMM-based approach
outperforms a recently proposed mask estimator based on a Wat-
son mixture model. In addition, the CGMM-based approach is
extended to an online speech enhancement scenario, which allows
this technique to be used in an online recognition setup. This online
version reduces the CHiME-3 evaluation error rate from 15.60%
to 8.47%, which is a comparable improvement to that obtained by
batch processing.

Index Terms— Noise robust speech recognition, speech en-
hancement, beamforming, CHiME-3

1. INTRODUCTION

In this paper, we consider beamforming for automatic speech recog-
nition (ASR) in noisy environments. Since background noise greatly
degrades the ASR performance, high quality noise reduction is in-
dispensable for noise robustness. A beamforming approach has
been shown to improve the ASR performance in tasks ranging from
medium vocabulary distant speech recognition [1] to large vocab-
ulary meeting transcription [2, 3]. A beamformer is often parame-
terized by a steering vector for a target speaker direction, as with a
delay-and-sum beamforming and minimum variance distortionless
response (MVDR) beamforming.

While accurate steering vector estimation is the key to effec-
tive beamforming, conventional steering vector estimators often rely
on possibly inaccurate knowledge, such as an array geometry or a
plane wave assumption. For example, the baseline beamformer that
was provided for the CHiME-3 challenge [4], a research community
challenge program conducted in 2015, first estimates a target speaker
direction with the steered response power-phase transform (SRP-
PHAT) technique [5]. Then a steering vector is obtained by using the
estimated direction of arrival (DOA) and a known microphone array
geometry with the assumption of plane wave propagation. Although
this beamformer works for simulated data in the CHiME-3 task, it
does not improve the recognition performance for real data [4].

To overcome this limitation, we recently proposed a time-
frequency mask-based approach to beamforming without any extra
knowledge such as the array geometry or the plane wave assump-
tion [6]. The central idea is to leverage the spectral sparsity of
speech signals by using time-frequency masks estimated with a
complex Gaussian mixture model (CGMM). The masks represent
the probabilities of background noise dominating the corresponding
time-frequency points. Then the steering vector can be estimated
solely from the time-frequency masks and the observed data, which
are used for constructing an MVDR beamformer. However, details
of the method were not shown in [6] due to the limited space.

In this paper, we provide a detailed description of the CGMM-
based beamforming method and undertake an extended investiga-
tion of this technique. We compare the CGMM-based beamformer
with a conventional DOA-based beamformer and a beamformer that
uses a Watson mixture model, which has often been used for time-
frequency mask estimation [7]. Furthermore, we extend the CGMM-
based approach to online speech enhancement, which enables this
beamformer to be used for online recognition. Our online algorithm
is derived with recursive updates of the CGMM parameters. Ex-
perimental results show that the online version of the CGMM-based
beamformer runs in real time (even with a Matlab implementation)
and reduces the word error rate (WER) from 15.60% to 8.47% for
the CHiME-3 evaluation set, which already surpasses the 2nd best
result of the challenge without speaker adaptation and system com-
bination.

The rest of this paper is organized as follows. Section 2 explains
the difference between our present method and previous studies.
Section 3 provides an overview of our speech enhancement system,
which comprises a time-frequency mask estimator, a steering vector
estimator, and a beamformer. Section 4 describes the CGMM-based
time-frequency mask estimation method used in our mask estima-
tor. Section 5 extends this method to an online speech enhancement
scenario. Section 6 shows ASR results obtained using the CHiME-3
corpus, which is followed by a conclusion in Section 7.

2. RELATED WORK

There have been several studies related to robust MVDR beamform-
ing in the literature [8, 9, 10]. These studies aimed at making MVDR
robust against steering vector estimation errors and sound reflections
rather than improving steering vector estimation accuracy. Since
MVDR attempts to null signals coming from any direction other
than the look direction specified by the steering vector, the pres-
ence of a target speech signal component in the ’nuisance’ direc-
tions, caused by the steering vector estimation errors and the sound
reflections, would end up canceling out the target speech. While
the methods proposed in [8, 9, 10] allow the beamformer to allevi-
ate the signal cancellation problem, our work attempts to improve
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Fig. 1. Schematic diagram of our microphone array system architec-
ture.

the accuracy of steering vector estimation. Although it is possible
to combine these previous robust beamforming techniques with the
proposed method, our experimental results show that the steering
vectors estimated with the proposed method are accurate enough to
prevent signal cancellation even with a conventional beamformer.

A mask-based beamforming approach was proposed in [7, 11],
but there are two main differences between our CGMM-based
method and these proposed methods. One difference is that we use a
CGMM for the mask estimation while the previous methods employ
a Watson mixture model. The Watson mixture model has fewer
parameters than the CGMM, and so it tends to be affected by the
fluctuation in the steering vector caused when speakers or recording
devices move. The CGMM is parameterized by a full-rank spatial
correlation matrix, and so we can deal flexibly with the spatial fluc-
tuation of the steering vector. The superiority of the CGMM to the
Watson mixture model is shown experimentally in Section 6. The
other difference is that previous methods construct a beamformer
without estimating the steering vector. For example, the method in
[11] applied a beamformer parameterized by a spatial correlation
matrix of a target signal, which is estimated with time-frequency
masks. Our preliminary experiments showed that the beamforming
proposed in [11] did not perform as well as the MVDR beamformer
using the steering vector in the CHiME-3 task.

Regarding mask estimation, the CGMM was used in [12] to
perform source separation in reverberant environments. However,
the estimated spectral masks were used to perform spectral masking
rather than beamforming, which we found to be harmful for ASR [6].

3. OVERVIEW OF OUR MICROPHONE ARRAY SYSTEM

Figure 1 shows a digram of our microphone array system architec-
ture. The system inputs consist of noise-corrupted speech signals
that are captured by the microphone array. The system comprises a
beamformer, a steering vector estimator, and a time-frequency mask
estimator. These three components combine to generate an enhanced
speech signal with a beamforming approach.

3.1. Beamforming
The assumed architecture performs MVDR beamforming to enhance
a speech signal in the short-time Fourier transform (STFT) domain.
Let yf,t,m denote them-th microphone signal at frequencyf and
time t. The signals from allM microphones can be represented

using vector notation as

yf,t = [yf,t,1, . . . , yf,t,M ]T, (1)

where superscriptT denotes non-conjugate transposition. The
beamformer applies a linear filterwf to the microphone signal
vector to produce an enhanced speech signal,ŝf,t, as

ŝf,t = wH
f yf,t, (2)

where superscriptH denotes conjugate transposition. The filterwf

is determined in order to minimize the beamformer output power
subject towH

f rf = 1, whererf is the steering vector of the target
signal. It should be noted that other types of beamformers such as the
multichannel Wiener filter may be a useful alternative to the MVDR
beamformer.

3.2. Steering vector estimation
The key to successful noise reduction lies in the accurate estimation
of the steering vector. Conventional beamformers often obtain the
steering vector by using DOA estimates and the plane wave prop-
agation assumption, which holds only for an ideal anechoic space.
Using the DOA estimates could also degrade noise reduction per-
formance as their estimation accuracy deteriorates when SNRs are
low.

Our approach does not use such errorful prior knowledge to ob-
tain an accurate estimate of the steering vector. The basic idea is
to directly estimate the steering vector using the covariance matrix
of a microphone image of a target speech signal. Specifically, we
utilize the principal eigenvector of an estimate of the covariance ma-
trix as an estimate of the steering vector. The covariance matrix
can be estimated by using time-frequency masks as described below,
which allows us to take advantage of recent developments as regards
clustering-based speech separation.

Let λ(n)
f,t denote the time-frequency mask that represents the

probability of the time-frequency point(f, t) containing only noise.
Then, we can estimate the covariance matrices of noisy speech and
noise as

R(x+n)
f =

1

T

∑
t

yf,ty
H
f,t, (3)

R(n)
f =

1∑
t λ

(n)
f,t

∑
t

λ
(n)
f,t yf,ty

H
f,t, (4)

respectively. Then, the desired covariance matrix for the target
speech signal is obtained by

R(x)
f = R(x+n)

f −R(n)
f . (5)

An estimate of the steering vector can be obtained by first performing
eigenvector decomposition onR(x)

f and then extracting the eigen-
vector associated with the maximum eigenvalue.

4. TIME-FREQUENCY MASK ESTIMATION BASED ON
COMPLEX GAUSSIAN MIXTURE MODEL

4.1. Observation model based on sparsity assumption in T-F do-
main
Considering the sparseness of speech in the time-frequency domain
[12, 13, 14, 15, 16], we can assume that observed signals are clus-
tered into two categories: one containing the noisy speech signal and
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one containing only noise. With this assumption, the observed signal
can be described as

yf,t = r (ν)f s
(ν)
f,t (where df,t = ν), (6)

wheredf,t denotes the category index at the time-frequency point
(f , t). ν may takex + n or n, where the categories represent noisy
speech and noise respectively.s(x+n)

f,t denotes a mixed signal of

speech and noise at frequencyf and timet, while s
(n)
f,t denotes a

noise signal at frequencyf and timet. One way to associate the
two categories with either noisy speech or noise, is to initialize the
parameters of the two categories in different ways, and another way
is to utilize some criterion after the clustering (as described in detail
in Section 4.3).

4.2. Generative model of observed signal with complex Gaus-
sian mixture model
Based on the above observation model, we design a generative model
of the observation and define an objective function for soft mask
estimation. First we assumes(ν)f,t locally follows a complex Gaussian
distribution as

s
(ν)
f,t ∼ Nc(0, ϕ

(ν)
f,t ), (7)

whereϕ(ν)
f,t corresponds to the variance of the signal at the time-

frequency point, andNc(x;µ, σ
2) = 1

πσ2 exp− |x−µ|2
σ2 . From Eqs.

(6) and (7), the multichannel observed signal follows a complex
Gaussian distribution

yf,t|df,t = ν ∼ Nc(0, ϕ
(ν)
f,t R(ν)

f ) (8)

conditioned ondf,t, whereR(ν)
f = r (ν)f r (ν)f

H. This generative
model of the observed signalyf,t eventually becomes a complex
Gaussian mixture model with the indicatordf,t. We estimate the pa-
rameterR(ν)

f as a full-rank unconstrained matrix instead of directly

estimatingr (ν)f , which enables us to deal flexibly with fluctuations
in the speaker and microphone positions [17].

4.3. Parameter estimation based on EM algorithm

The CGMM parameters, i.e.,ϕ(ν)
f,t and R(ν)

f , are estimated with a
Maximum Likelihood (ML) approach. ML estimation can be per-
formed with the Expectation-Maximization (EM) algorithm. TheQ
function to be maximized in each EM iteration is defined as

Q(Θ) =
∑
f,t

∑
ν

λ
(ν)
f,t logNc(yf,t; 0, ϕ

(ν)
f,t R(ν)

f ), (9)

whereλ(ν)
f,t represents the posterior probability ofdf,t beingν. This

posterior can be computed as

λ
(ν)
f,t ←

p(yf,t|df,t = ν,Θ)∑
ν p(yf,t|df,t = ν,Θ)

, (10)

wherep(yf,t|df,t = ν,Θ) = Nc(yf,t; 0, ϕ
(ν)
f,t R(ν)

f ). The parameter
values can be updated as follows:

ϕ
(ν)
f,t ←

1

M
tr(yf,ty

H
f,tR

(ν)
f

−1
), (11)

R(ν)
f ← 1∑

t λ
(ν)
f,t

∑
t

λ
(ν)
f,t

1

ϕ
(ν)
f,t

yf,ty
H
f,t. (12)

The time-frequency mask for point(f, t) can be obtained as the
value ofλ(n)

f,t after convergence.
After the convergence of the EM algorithm, to associate the two

clusters with noise and noisy speech, we compute the entropy among
the eigenvalues of the estimated spatial correlation matrix. The spa-
tial correlation matrix with the bigger entropy can be regarded as that
of the noise.

5. ONLINE SPEECH ENHANCEMENT WITH
CGMM-BASED BEAMFORMING

In this section, we extend the proposed CGMM-based method to en-
able online speech enhancement. We assume that an observed signal
is obtained as a sequence of mini-batches. Here, letl ∈ {1, . . . , L}
be a mini-batch index, and letBl denote a set of time frame indices
within the l-th mini-batch. For thel-th mini-batch,λ(ν)

f,t andϕ(ν)
f,t

are estimated with Eqs. (10) and (11), respectively, using the esti-
mates ofR(ν)

f obtained from the (l − 1)-th mini-batch,R(ν)
f,l−1. By

modifying the update equation given by Eq. (12), the estimate of the
spatial correlation matrix at thel-th mini-batch,R(ν)

f,l , is recursively
obtained by

R(ν)
f,l ←

Λ
(ν)
f,l−1

Λ
(ν)
f,l−1 +

∑
t∈Bl

λ
(ν)
f,t

R(ν)
f,l−1

+
1

Λ
(ν)
f,l−1 +

∑
t∈Bl

λ
(ν)
f,t

∑
t∈Bl

λ
(ν)
f,t

1

ϕ
(ν)
f,t

yf,ty
H
f,t, (13)

whereΛ(ν)
f,l is the sum ofλ(ν)

f,t over all the observed time frames,
which is also recursively updated by

Λ
(ν)
f,l ←Λ

(ν)
f,l−1 +

∑
t∈Bl

λ
(ν)
f,t . (14)

Using the sequentially estimated soft mask,λ
(ν)
f,t , beamforming

can be performed online as follows. First, the covariance matrices
for noisy speech and noise are recursively updated by

R(ν)
f,l ←

Λ
(ν)
f,l−1

Λ
(ν)
f,l−1 +

∑
t∈Bl

λ
(ν)
f,t

R(ν)
f,l−1

+
1

Λ
(ν)
f,l−1 +

∑
t∈Bl

λ
(ν)
f,t

∑
t∈Bl

λ
(ν)
f,t yf,ty

H
f,t. (15)

The steering vector for thel-th mini-batch is estimated by using the
procedure described in Section 3.2. After that, the enhanced signal
for Bl can be obtained with MVDR beamforming. It should be noted
that MVDR beamforming can be also performed without updating
the CGMM parameterR(ν)

f,l if we can obtain a reliable initial value.

6. EXPERIMENTAL EVALUATION

We conducted ASR experiments using the CHiME-3 corpus to eval-
uate the noise reduction performance of the CGMM-based beam-
former. The corpus consists of read speech recorded in four different
environments with six microphones attached to a tablet device and
additional simulated audio data. The sentences were taken from the
WSJ0 corpus. The training set comprises 1600 real and 7138 simu-
lated utterances. The training data amounts to about 108 hours when
using the audio data from all six microphones for training. The de-
velopment and evaluation sets consist of 3280 and 2640 utterances,
respectively, each containing both simulated data (simu data) and
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recorded data (real data). Further details of the corpus can be found
in [4].

In our experiments, we performed speaker independent decod-
ing by using a deep convolutional neural network (CNN) acoustic
model [18, 19] and a class-based recurrent neural network language
model (RNN-LM) [20, 21]. Inputs to the acoustic model comprised
40-dimensional log mel-filter bank channel outputs and their delta
and double-delta coefficients. Our CNN was based on the network-
in-network concept [22] and consisted of five convolution layers and
two max-pooling layers, where all the layers contained 180 feature
maps. The last convolution layer was followed by three fully con-
nected layers with 2048 units and a softmax layer. The softmax
layer contained 5976 units, i.e., context-dependent HMM states. Our
RNN-LM used 10 classes and accommodated 500 units in the hidden
recurrent layer. See our CHiME-3 paper [6] for a detailed descrip-
tion of the recognizer.

We investigate the effectiveness of the CGMM-based beam-
former with batch- and online-processing setups in Sections 6.1 and
6.2, respectively.

6.1. Batch processing experiments

For the batch-processing setup, we performed beamforming with the
configurations shown in Table 1. The initial value ofR(x+n)

f was

set at the covariance matrix of an observed signal vector.R(n)
f was

initialized by using an identity matrix. We used two conventional

Table 1. Experimental conditions.
Sampling frequency 16 kHz
Frame length 25 ms
Frame overlap 75%
Window function Hanning
Number of EM iterations 20
Number of microphones 6

beamformers for comparison: one was the CHiME-3 baseline beam-
former, which estimates steering vectors based on an array geometry
and a plane wave assumption (see [4] for details); the other was a
beamformer that was obtained by replacing a CGMM with a Watson
mixture model in the mask-based beamforming scheme.

Table 2 compares the proposed CGMM-based beamformer with
its two competitors in terms of WERs. We can see that the CGMM-
based method achieved the lowest WERs for both the development
and evaluation sets.

Table 2. WERs obtained with the proposed method and its competi-
tors. Following a CHiME-3 challenge regulation, we focused on the
results for real data.

systems
dev eval

avg simu real avg simu real

not used 8.62 8.24 9.01 12.89 10.17 15.60

conventional 7.10 4.79 9.41 10.79 5.37 16.21
Watson MM 5.71 6.33 5.09 10.60 11.72 9.47

Proposed 4.96 5.09 4.83 8.46 8.06 8.86

To investigate the impact that the number of microphones has
on the noise reduction performance, we performed experiments
where we varied the number of microphones from two to five. Table
3 shows the WERs we obtained with different numbers of micro-
phones. Although the use of fewer microphones increased the WER,
our proposed beamformer always yielded performance gains for the

real data. This means that the CGMM-based beamformer is applica-
ble to the most practically relevant multi-microphone setup that uses
two microphones.

Table 3. WERs obtained with different numbers of microphones.
Number of

microphones
dev eval

avg simu real avg simu real

2 8.82 9.96 7.69 12.05 10.44 13.66
3 6.79 7.16 6.42 9.74 8.09 11.39
4 5.79 6.13 5.45 9.21 7.90 10.51
5 5.43 5.50 5.36 8.67 6.96 10.37

6.2. Online processing experiments
We evaluated the online speech enhancement algorithm described in
Section 5. We set the size of the first mini-batch at500 ms and that
of succeeding mini-batches at250 ms to ensure that the first mini-
batch contained the target speech signal. We initialized the spatial
correlation matrices by using separate speech and noise signals con-
tained in the CHiME-3 corpus. Specifically,R(x+n)

f,0 was obtained

from speech signals recorded in a booth whileR(n)
f,0 was obtained

from separate noise signals. This initialization also allowed us to
avoid the permutation ambiguity described at the end of Section 4.3
and thus reduce the computational cost. With this setup, the aver-
age real-time factor was0.86 with our Matlab implementation on
a 2.6 GHz PC. Therefore we can obtain an enhanced speech signal
with a 500 ms delay. Other hyperparameters were set in the same
way as for the experiments in Section 6.1. For the online processing,
we considered two cases where the CGMM parameters, namely the
spatial correlation matrices, were updated or not updated.

Table 4 shows the WERs obtained by batch processing and on-
line processing with/without a CGMM parameter update. Note that
we performed batch and online beamforming with the same initial
conditions to obtain fair comparisons. Even without the parame-
ter update, our online beamformer yielded performance gains while
having an advantage in terms of computational cost. With the param-
eter update, the performance gains increased and were comparable
to those obtained by batch processing. Our online speech enhance-
ment reduced the WERs from 15.60% to 8.47% compared with those
obtained without processing shown in Table 2.

Table 4. WERs obtained with online processing.

systems
dev eval

avg simu real avg simu real

batch 5.09 5.19 5.00 8.14 7.90 8.37
online w/o updates 6.09 6.66 5.52 10.67 9.74 11.59
online w/ updates 5.27 5.54 5.00 8.20 7.92 8.47

7. CONCLUSION

We described a beamfomer that uses a novel steering vector esti-
mation method based on time-frequency masks. The use of the
time-frequency masks allowed us to avoid using inaccurate prior
knowledge such as an array geometry and a plane wave propaga-
tion assumption and thus provided robust steering vector estimates.
The time-frequency masks were estimated by using a spectral model
based on a CGMM, which was shown to outperform a recently pro-
posed Watson mixture model. In addition, we extended the CGMM-
based beamfoming approach to online speech enhancement. Our
experimental results showed that the online processing method re-
duced the WER from 15.60% to 8.47% in the CHiME-3 task, which
is a comparable improvement to that obtained by batch processing.
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