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ABSTRACT To overcome this limitation, we recently proposed a time-

. . . . . frequency mask-based approach to beamforming without any extra
This paper considers acoustic beamforming for noise robust am‘?{nowledge such as the array geometry or the plane wave assump-

”}?,ﬂ?,;’pf;gg fcogr:‘ri]t;r::igp‘sgh r’?d bcegr;nfgrnrzmsaggnmLfstesfrc?riClﬁon [6]. The central idea is to leverage the spectral sparsity of
groun Dy g s p g 8peech signals by using time-frequency masks estimated with a
direction specified by a steering vector. Hence, accurate steegynjey Gaussian mixture model (CGMM). The masks represent
ing vector estimation is paramount for successful noise reductiony,e nronapilities of background noise dominating the corresponding
Recently, a beamforming approach was proposed that employs imga,e frequency points. Then the steering vector can be estimated
fLequency masl;s.nln the speech Tecognltlon s%/stemfwr?_submltted Wlely from the time-frequency masks and the observed data, which
the CHIME-3 Challenge, we employed a new form of this approachy e \ised for constructing an MVDR beamformer. However, details
that uses a speech spectral model based on a complex Gaussignne method were not shown in [6] due to the limited space.
mhlxture model (CGMM)htO estlma_(tf the tmr:e_-frelq;en(_:ly m‘:’l‘_il_(s and In this paper, we provide a detailed description of the CGMM-
the steering vector without providing technical detalls. This pa]})ased beamforming method and undertake an extended investiga-
per elaborates on this technique and examines its effectiveness %n of this technique. We compare the CGMM-based beamformer
ASR. Experimental results show that the C_ZGMM-based approacii, 4 conventional DOA-based beamformer and a beamformer that
outperf_orms a recently propc_)sed mask estimator based on a W ses a Watson mixture model, which has often been used for time-
SOP rr(;lx(tjutre modelll. In addlrtllon,hthe CGMtM-baseq apr;]r,o‘;’]mh”'Sfrequency mask estimation [7]. Furthermore, we extend the CGMM-
extended 1o an oniin€ speech enhancement scenario, which alloygse approach to online speech enhancement, which enables this
this technique to be used in an online recognition setup. This onlinge ) mformer to be used for online recognition. Our online algorithm
version reduces the CHIME-3 evaluation error rate from 15'600?5 derived with recursive updates of the CGMM parameters. Ex-
:30 tgfj%’ Wh".zh is a comparable improvement to that obtained l"’%erimental results show that the online version of the CGMM-based
atch processing. beamformer runs in real time (even with a Matlab implementation)
Index Terms— Noise robust speech recognition, speech en-and reduces the word error rate (WER) from 15.60% to 8.47% for
hancement, beamforming, CHIME-3 the CHIME-3 evaluation set, which already surpasses the 2nd best
result of the challenge without speaker adaptation and system com-
bination.
1. INTRODUCTION The rest of this paper is organized as follows. Section 2 explains
In this paper, we consider beamforming for automatic speech recoghe difference between our present method and previous studies.
nition (ASR) in noisy environments. Since background noise greatlySection 3 provides an overview of our speech enhancement system,
degrades the ASR performance, high quality noise reduction is inwhich comprises a time-frequency mask estimator, a steering vector
dispensable for noise robustness. A beamforming approach hastimator, and a beamformer. Section 4 describes the CGMM-based
been shown to improve the ASR performance in tasks ranging frortime-frequency mask estimation method used in our mask estima-
medium vocabulary distant speech recognition [1] to large vocabtor. Section 5 extends this method to an online speech enhancement
ulary meeting transcription [2, 3]. eamformer is often parame-scenario. Section 6 shows results obtained using the CHIME-

I i iption [2, 3]. ADb fi is oft Section 6 sh ASR Its obtained the CHIME-3
terized by a steering vector for a target speaker direction, as with eorpus, which is followed by a conclusion in Section 7.
delay-and-sum beamforming and minimum variance distortionless
response (MVDR) beamforming.

While accurate steering vector estimation is the key to effec- 2. RELATED WORK

tive beamforming, conventional steering vector estimators often relffhere have been several studies related to robust MVDR beamform-
on possibly inaccurate knowledge, such as an array geometry oriag in the literature [8, 9, 10]. These studies aimed at making MVDR
plane wave assumption. For example, the baseline beamformer thatbust against steering vector estimation errors and sound reflections
was provided for the CHIME-3 challenge [4], a research communityrather than improving steering vector estimation accuracy. Since
challenge program conducted in 2015, first estimates a target speakdiVDR attempts to null signals coming from any direction other
direction with the steered response power-phase transform (SREran the look direction specified by the steering vector, the pres-
PHAT) technique [5]. Then a steering vector is obtained by using thence of a target speech signal component in the 'nuisance’ direc-
estimated direction of arrival (DOA) and a known microphone arraytions, caused by the steering vector estimation errors and the sound
geometry with the assumption of plane wave propagation. Althougheflections, would end up canceling out the target speech. While
this beamformer works for simulated data in the CHIME-3 task, itthe methods proposed in [8, 9, 10] allow the beamformer to allevi-
does not improve the recognition performance for real data [4].  ate the signal cancellation problem, our work attempts to improve

978-1-4799-9988-0/16/$31.00 ©2016 IEEE 5210 ICASSP 2016



Microphone signals using vector notation as
44—

Time-frequency Yo =Wrets - uneml (1)
mask estimator
where superscripfl' denotes non-conjugate transposition. The
Sequence of beamformer applies a linear filtew; to the microphone signal
time-frequency masks vector to produce an enhanced speech signal, as
Steering vector . -
estimator St =WsYp s, 2

where superscriptl denotes conjugate transposition. The filtgr
is determined in order to minimize the beamformer output power
subject towlf{rf = 1, wherer; is the steering vector of the target

Steering vector

Beamformer signal. It should be noted that other types of beamformers such as the
7 multichannel Wiener filter may be a useful alternative to the MVDR
Enhanced signal beamformer.

Fig. 1. Schematic diagram of our microphone array system architec3.2. Steering vector estimation

ture. The key to successful noise reduction lies in the accurate estimation

of the steering vector. Conventional beamformers often obtain the

the accuracy of steering vector estimation. Although_it is pOS_Sibl"steering vector by using DOA estimates and the plane wave prop-
to combine these previous robust beamforming techniques with thgqation assumption, which holds only for an ideal anechoic space.
proposed method, our experimental results show that the steeringsing the DOA estimates could also degrade noise reduction per-
vectors estimated with the proposed method are accurate enoughgfimance as their estimation accuracy deteriorates when SNRs are
prevent signal cancellation even with a conventional beamformer. |5\,

A mask-based beamforming approach was proposed in [7, 11],  oyr approach does not use such errorful prior knowledge to ob-
but there are two main differences between our CGMM-baseg,in an accurate estimate of the steering vector. The basic idea is
method and these proposed methods. One difference is that we Usgajirectly estimate the steering vector using the covariance matrix
CGMM for th.e mask estimation while the previous methods employyt 5 microphone image of a target speech signal. Specifically, we
a Watson mixture model. The Watson mixture model has fewe{yjjize the principal eigenvector of an estimate of the covariance ma-
parameters than the CGMM, and so it tends to be affected by thgiy a5 an estimate of the steering vector. The covariance matrix
fluctuation in the steering vector caused when speakers or recording, pe estimated by using time-frequency masks as described below,

devices move. The CGMM is parameterized by a full-rank spatia|yhich allows us to take advantage of recent developments as regards
correlation matrix, and so we can deal flexibly with the spatial ﬂuc'clustering-based speech separation.

tuation of the steering vector. The superiority of the CGMM to the
Watson mixture model is shown experimentally in Section 6. The
other difference is that previous methods construct a beamform
without estimating the steering vector. For example, the method i

Let )\(f’ft) denote the time-frequency mask that represents the
obability of the time-frequency poittlf, ¢) containing only noise.
hen, we can estimate the covariance matrices of noisy speech and

[11] applied a beamformer parameterized by a spatial correlatioR©'S€ @s

matrix of a target signal, which is estimated with time-frequency (@iny 1 H

masks. Our preliminary experiments showed that the beamforming Ry =% D ViVie 3)

proposed in [11] did not perform as well as the MVDR beamformer ¢

using the steering vector in the CHIME-3 task. R _ 1 Z )\<")y v @)
Regarding mask estimation, the CGMM was used in [12] to Ty, A4 hel a7 e

perform source separation in reverberant environments. However,
the estimated spectral masks were used to perform spectral maskirgspectively. Then, the desired covariance matrix for the target
rather than beamforming, which we found to be harmful for ASR [6].speech signal is obtained by

(@) _ p(@+n) (n)
3. OVERVIEW OF OUR MICROPHONE ARRAY SYSTEM Ry =Ry — Ry ®)

Figure 1 shows a digram of our microphone array system architecan estimate of the steering vector can be obtained by first performing

ture. The system inputs consist of noise-corrupted speech signal§yenvector decomposition d®'*) and then extracting the eigen-
that are captured by the microphone array. The system comprises,gctor associated with the max{mum eigenvalue.

beamformer, a steering vector estimator, and a time-frequency mask

estimator. These three components combine to generate an enhanced

Speech S|gna| with a beamforming approach. 4, TlME-FREQUENCY MASK ESTIMATION BASED ON
COMPLEX GAUSSIAN MIXTURE MODEL
3.1. Beamforming 4.1. Observation model based on sparsity assumption in T-F do-

The assumed architecture performs MVDR beamforming to enhand@ain

a speech signal in the short-time Fourier transform (STFT) domainConsidering the sparseness of speech in the time-frequency domain
Let ys,+,m denote then-th microphone signal at frequengyand  [12, 13, 14, 15, 16], we can assume that observed signals are clus-
time t. The signals from allM/ microphones can be represented tered into two categories: one containing the noisy speech signal and
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one containing only noise. With this assumption, the observed signdlhe time-frequency mask for poirftf,¢) can be obtained as the
can be described as value of\'") after convergence.
W) (V) After the convergence of the EM algorithm, to associate the two
Yo =15 S5t (where dy. = v), © clusters with noise and noisy speech, we compute the entropy among
he eigenvalues of the estimated spatial correlation matrix. The spa-
ial correlation matrix with the bigger entropy can be regarded as that
of the noise.

whered;; denotes the category index at the time-frequency poin{
(f, t). v may takex + n or n, where the categories represent noisy
speech and noise respectlvely<z+") denotes a mixed signal of

speech and noise at frequengyand timet, while s\") denotes a = ONLINE SPEECH ENHANCEMENT WiTH

noise S|gna! at frequencf/ anq timet. One way to assec_lete_ the CGMM-BASED BEAMFORMING

two categories with either noisy speech or noise, is to initialize the

parameters of the two categories in different ways, and another wap this section, we extend the proposed CGMM-based method to en-
is to utilize some criterion after the clustering (as described in detaigble online speech enhancement. We assume that an observed signal
in Section 4.3). is obtained as a sequence of mini-batches. Heré def1,..., L}

be a mini-batch index, and I#; denote a set of time frame indices
within the [-th mini-batch. For thé-th mini-batch, AM and ¢(">

4.2. Generative model of observed signal with complex Gaus- .

sian mixture model g P are estimated with Egs. (10) and (11), respectively, using the esti-
(v) v)

Based on the above observation model, we design a generative mod&ftes Ofth obtained from thel(— 1)-th mini- batcE Ryi_1- BY o

of the observation and define an objective function for soft mas#ndifying the update equation given by Eq. (12), the estimate of the

(v)
estimation. Firstwe assursé, locally follows a complex Gaussian spatial correlation matrix at theth mini-batch,R 7, is recursively

distribution as obtained by
v v (v)
s~ N(0,64)), ©) RW) Ayia RY),
A(l’) + Z /\(U) ,
(v) . . . fil—1 teB; t
where ¢,/ corresponds to the variance of the S|gnal at the time- 1 )
frequency point, angV,.(x; 11, 0%) = —L; exp — lz=pl” “ . From Egs. + 2] S )\m Z it ¢(V) — Yy, tyf »  (13)
(6) and (7), the multichannel observed signal’ foIIows a complex Hi-t tEB; 7ot teB
Gaussian distribution whereA(”l) is the sum of/\;”) over all the observed time frames,
Yyldse = v~ Ne(0, qsf”)R(”)) @)  Whichis faiso recursively updated by
(V) AW (u)

conditioned ond;,, where R<f”) = r;”)r;”m. This generative Api Apia + Z Afi (14)

model of the observed signlyyt eventually becomes a complex teBy

Gaussian mixture model with the indicator,. We estimate the pa- Using the sequentially estimated soft makk beamforming
rameterR}") as a full-rank unconstrained matrix instead of directly can be performed online as follows. First, the covariance matrices

estlmatlngr(”> which enables us to deal flexibly with fluctuations for noisy speech and noise are recursively updated by

in the speaker and microphone positions [17]. »

RO Apia )
4.3. Parameter estimation based on EM algorithm PEUAY) Sren, AL Fl=t
The CGMM parameters, |e<z;(f“) and R}’” are estimated with a 1 ' \®)
Maximum Likelihood (ML) approach. ML estimation can be per- + Ay A Z VYT (15)
formed with the Expectation-Maximization (EM) algorithm. T@e fii-1 teB, 7 f,t teB

function to be maximized in each EM iteration is defined as The steering vector for thieth mini-batch is estimated by using the

)\(”> 1 g .0, (u)R(u> 7 9 procedure described in Section 3.2. After that, the enhanced signal
Z Z og N V5.0, @70R;™) © for B; can be obtained with MVDR beamforming. It should be noted
that MVDR beamforming can be also performed without updating

where)\(”> represents the posterior probabilitydf, beingy. This ~ the CGMM parametelR(f’jl) if we can obtain a reliable initial value.
posterlor can be computed as

v

6. EXPERIMENTAL EVALUATION
p(yf,tldfwt =V, 9)

A(fyf A S oY idre =1,0) (10)  We conducted ASR experiments using the CHIME-3 corpus to eval-
v PV paldre = uate the noise reduction performance of the CGMM-based beam-
former. The corpus consists of read speech recorded in four different
environments with six microphones attached to a tablet device and
additional simulated audio data. The sentences were taken from the
WSJO0 corpus. The training set comprises 1600 real and 7138 simu-

wherep(y,,|df.. = 1,0) = No(y,,;0,6/R}). The parameter
values can be updated as follows:

v v 1
oY) {tr(yf,tyf,tR( ", (11)  Jated utterances. The training data amounts to about 108 hours when
using the audio data from all six microphones for training. The de-
R(fu) - @) Z (fyt) norel tyft (12)  velopment and evaluation sets consist of 3280 and 2640 utterances,
2 T D0 respectively, each containing both simulated data (simu data) and
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recorded data (real data). Further details of the corpus can be foumdal data. This means that the CGMM-based beamformer is applica-

in [4]. ble to the most practically relevant multi-microphone setup that uses
In our experiments, we performed speaker independent decodwo microphones.

ing by using a deep convolutional neural network (CNN) acoustic

model [18, 19] and a class-based recurrent neural network languageable 3. WERs obtained with different numbers of microphones.

model (RNN-LM) [20, 21]. Inputs to the acoustic model comprised Number of dev eval
40-dimensional log mel-filter bank channel outputs and their delta | microphones)| avg | simu | real | avg | simu | real
and double-delta coefficients. Our CNN was based on the network- 2 882 9906 ] 7.60| 12.05] 10.44 | 13.66
in-network concept [22] and consisted of five convolution layers and 3 6.79] 716 | 6.42]| 9.74 | 8.09 | 11.39
two max-pooling layers, where all the layers contained 180 feature 4 579] 6.13 | 5.45| 9.21 | 7.90 | 10.51
maps. The last convolution layer was followed by three fully con- 5 543 ] 550 | 5.36| 8.67 | 6.96 | 10.37

nected layers with 2048 units and a softmax layer. The softmax
layer contained 5976 units, i.e., context-dependent HMM states. Oy 2 Online processing experiments

RNN-LM used 10 classes and accommodated 500 units in the hid_d%e evaluated the online speech enhancement algorithm described in

recurrent layer. See our CHIME-3 paper [6] for a detailed deSCI"F"Section 5. We set the size of the first mini-batcl3@@ ms and that
tion of the recognizer. . of succeeding mini-batches 250 ms to ensure that the first mini-

We investigate the effectiveness of the CGMM-based beampgich contained the target speech signal. We initialized the spatial
former with batch- and online-processing setups in Sections 6.1 and,re|ation matrices by using separate speech and noise signals con-

6.2, respectively. tained in the CHIME-3 corpus. SpecificalR}’; " was obtained

from speech signals recorded in a booth WHRI% was obtained
6.1. Batch processing experiments from separate noise signals. This initialization also allowed us to
For the batch-processing setup, we performed beamforming with th@void the permutation ambiguity described at the end of Section 4.3
configurations shown in Table 1. The initial value @;Hn) was and thus reduce the computational cost. With this setup, the aver-

age real-time factor wa8.86 with our Matlab implementation on
a2.6 GHz PC. Therefore we can obtain an enhanced speech signal
with a 500 ms delay. Other hyperparameters were set in the same
way as for the experiments in Section 6.1. For the online processing,

set at the covariance matrix of an observed signal vea(ﬂf.) was
initialized by using an identity matrix. We used two conventional

Table 1. Experimental conditions. we considered two cases where the CGMM parameters, namely the
Sampling frequency 16 kHz spatial correlation matrices, were updated or not updated.

Frame length 25ms Table 4 shows the WERs obtained by batch processing and on-
Frame overlap 75% line processing with/without a CGMM parameter update. Note that
Window function Hanning we performed batch and online beamforming with the same initial
Number of EM iterations 20 conditions to obtain fair comparisons. Even without the parame-
Number of microphones 6

ter update, our online beamformer yielded performance gains while
having an advantage in terms of computational cost. With the param-
beamformers for comparison: one was the CHIME-3 baseline beaneter update, the performance gains increased and were comparable
former, which estimates steering vectors based on an array geometxythose obtained by batch processing. Our online speech enhance-
and a plane wave assumption (see [4] for details); the other wasraent reduced the WERSs from 15.60% to 8.47% compared with those
beamformer that was obtained by replacing a CGMM with a Watsormbtained without processing shown in Table 2.

mixture model in the mask-based beamforming scheme.

Table 2 compares the proposed CGMM-based beamformer with Table 4. WERS obtained with online processing.
its two competitors in terms of WERs. We can see that the CGMM- " dev eval
based method achieved the lowest WERs for both the development sysiems avg | simu | real | avg | simu| real

and evaluation sets. batch 509[ 519]500[ 814 [ 790 [ 8.37
online w/o updates| 6.09 | 6.66 | 5.52 | 10.67 | 9.74 | 11.59
Table 2. WERSs obtained with the proposed method and its competi-| online w/ updates|| 5.27 | 5.54 | 5.00 | 8.20 | 7.92 | 8.47
tors. Following a CHIME-3 challenge regulation, we focused on the
results for real data.

systems Qev e_val 7. CONCLUSION
avg | simu| real | avg | simu | real ] ] ]
[ notused || 8.62] 8.24 [ 9.01] 12.89] 10.17] 15.60] We described a beamfomer that uses a novel steering vector esti-
conventionalll 7101 479 T 941 10791 537 | 1621 mation method based on time-frequency masks. The use of the
Watson MM 5'71 6.33 5'09 10.60 11' 75 9;17 time-frequency masks allowed us to avoid using inaccurate prior
Proposed 7961 509 (483 846 | 506 | 886 knowledge such as an array geometry and a plane wave propaga-

tion assumption and thus provided robust steering vector estimates.
The time-frequency masks were estimated by using a spectral model
To investigate the impact that the number of microphones habased on a CGMM, which was shown to outperform a recently pro-
on the noise reduction performance, we performed experimentsosed Watson mixture model. In addition, we extended the CGMM-
where we varied the number of microphones from two to five. Tabldased beamfoming approach to online speech enhancement. Our
3 shows the WERs we obtained with different numbers of micro-experimental results showed that the online processing method re-
phones. Although the use of fewer microphones increased the WERuced the WER from 15.60% to 8.47% in the CHIME-3 task, which
our proposed beamformer always yielded performance gains for the a comparable improvement to that obtained by batch processing.
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