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ABSTRACT 
 

Towards a better understanding of emotion in speech, it is 

important to understand how emotion changes and when it changes. 

Recognizing emotions using pre-segmented speech utterances 

results in a loss in continuity of emotions and does not provide 

insights into emotion changes. In this paper, we propose an 

investigation into emotion change detection from the perspective 

of exchangeability of data points observed sequentially using a 

martingale framework. Within the framework, a per-frame GMM 

likelihood based approach is proposed as a measure of strangeness 

from a particular emotion class. Experimental results on the 

IEMOCAP database demonstrate that the proposed martingale 

framework offers significant improvements over the baseline GLR 

method for detecting emotion changes not only between neutral 

and emotional speech, but also between positive and negative 

classes along the arousal and valence emotion dimensions. 

Index Terms — Emotion change detection, Gaussian 

mixture model, Martingale, Exchangeability 
 

1. INTRODUCTION 
 

When speakers engage in human-computer interaction during 

which their emotions are recognized from behavioral signals, it is 

desirable that the system can detect changes in emotions as they 

occur, so that it can react correspondingly. Emotion recognition 

research to date has mainly focused on classifying or predicting 

from pre-segmented speech signals (e.g. on a file-by-file basis) [1], 

[2], [3], which lacks realism and does not provide insight into 

emotion changes. As emotions are essentially responses or 

reactions to external stimuli, understanding emotion changes might 

help understanding the external environment, such as what is 

happening to the speaker, or what triggers these emotions. These 

demands motivate research aiming to detect emotion changes in 

time regarding emotion categories [4] and emotion dimensions [5]. 

However, emotion change detection remains challenging and far 

from being used in applications, due to variability (e.g. phonetic 

and speaker variability) in speech, and the subjective nature of 

emotions (e.g. neutral and sadness are confusable in speech).  

Although emotion change detection is an understudied research 

area, change detection has been a long-standing problem for 

example in speaker change detection [6], concept drift detection [7] 

and video shot change detection [8]. Speaker change detection 

methods have recently been investigated for emotion change [4]. 

However many of these methods seem to either be easily affected 

by variability or depend on the availability of large databases [9], 

[10], [11]. Because of this, methods from the more generic 

problem of statistical change detection are considered, which 

motivates investigation of martingales. Unlike most change 

detection methods using large sliding windows, martingales have 

been proposed for detecting changes in streaming data and make 

decisions on-the-fly by testing exchangeability (refer to section 3.1) 

of sequentially observed data points [8], [12]. This opens a 

possibility for an alternative framework for emotion change 

detection with an improvement in temporal resolution [7]. 

In this paper, the problem of localizing emotion change points 

in time was investigated from the perspective of testing 

exchangeability using a martingale framework, where data points 

(frame-based features) from speech are observed one by one. This 

method potentially offers higher temporal resolution than using 

large sliding windows. Moreover, emotional models may be 

helpful to reduce effects of phonetic variability compared with 

methods that require no prior knowledge of emotions.  
 

2. RELATED WORK  
 

Although emotion change detection might be important for a better 

understanding of emotions, there have been only a few studies that 

aim to detect the instant of emotion changes [4], [5]. Lade 

proposed an adaptive temporal topic model that captures the 

temporal information for localizing the time when huge changes in 

emotion dimensions occur [5]. In our previous work [4], GMM 

based methods with and without prior knowledge of emotion were 

proposed to detect any emotion changes among four emotions. 

However, an important emotion change of interest is between 

neutral and emotional speech. Also, a focus on arousal and valence 

would allow a move away from pre-defined categories to more 

generic descriptors of the emotion space. There are currently many 

papers focusing only on +/- arousal and +/- valence, e.g. for 

cross-corpus comparisons [13].  

 An intuitive question with emotion change detection is how it 

compares with performing emotion recognition in real time and 

finding resultant changes. However, the accuracy of speech based 

emotion recognition [1], [2], [3], [14], [15], [16], [17], especially 

for naturalistic and semi-naturalistic databases, remains 

unsatisfactory for being used for the purpose for change detection.  

 Detecting emotion changes is somewhat analogous to 

speaker change detection, e.g. [6], [18], [19], [20]. However, 

applying these methods into an emotion change detection task 

remains problematic because of the phonetic and speaker 

variability embedded in emotional speech and the complex nature 

of emotion (e.g. a person might experience more than one emotion 

at a time). Therefore, our attentions have been focused on a more 

generic change-detection problem, where the martingale-based 

methods based on testing exchangeability (discussed further in 

section 3.1) are applied [7], [8]. The idea of exchangeability was 
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introduced by [12], and applied for change detection by [8]. It has 

been widely used in image processing [21]. However, there has 

very little work done in speech apart from [22], in which the 

martingale method was used for detecting speech rate changes. 

Despite the difference in context, their work showed that testing 

exchangeability could be effectively used in speech processing. 

After introducing the original martingale framework as well as 

analyzing its potential drawbacks for detecting emotion changes 

(section 3.2), a modified framework is proposed (section 3.3). 
 

3. A MARTINGALE FRAMEWORK 

3.1 Exchangeability and Martingale  

By definition [12], a sequence of random variables 

{𝑥1, 𝑥2, … 𝑥𝑛} is exchangeable if their joint distribution remains 

unchanged regardless of any permutation 𝜋 of {1, … , 𝑛}, namely: 

𝑝(𝑥1, 𝑥2, … 𝑥𝑛) = 𝑝(𝑥𝜋(1), 𝑥𝜋(2), … 𝑥𝜋(𝑛)) (1) 

 An example of exchangeability is the selection of balls in 

sequence without replacement from an urn where there are only 

uniquely numbered red balls. In this case, the joint probability of 

choosing red balls remains invariant. Consider the case that a 

number of red balls are selected up to time t, after which one starts 

to select balls from another urn for which the probability of a red 

ball is 𝑝(𝑟𝑒𝑑) < 1. Then the selected ball sequence becomes less 

exchangeable, as the joint distribution of selecting a red ball is no 

longer 1. The changes in model or distribution undermine 

exchangeability. 

Given a sequence of random variables 𝑿𝑖: {𝑥1, 𝑥2, … 𝑥𝑖} , 

where 𝑿𝑖 denotes all random variables from 1 to i, if 𝑀𝑖 is a 

measurable function of 𝑿𝑖 and 𝐸(|𝑀𝑖|) < ∞, then {𝑀𝑖 : 0 ≤ 𝑖 ≤
∞} is a Martingale process once it satisfies [8], [23]:   

𝐸(𝑀𝑛+1|𝑿𝑛) = 𝑀𝑛 (2) 

Further, the terms Submartingale and Supermartingale can be 

defined respectively as: 

𝐸(𝑀𝑛+1|𝑿𝑛) ≥ 𝑀𝑛 (3) 

𝐸(𝑀𝑛+1|𝑿𝑛) ≤ 𝑀𝑛 (4) 

For change detection, the martingale value 𝑀𝑖 measures the 

confidence of rejecting the null hypothesis of exchangeability. 

Combining exchangeability and martingales, a family of 

Randomized Power Martingales with initial value 𝑀0 = 1, was 

proposed by [12]: 

𝑀𝒏
(𝜺)

= ∏ 𝜀𝑝𝑖
𝜀−1

𝑛

𝑖=1
 (5) 

where 𝑝𝑖 can be seen as a measure of the exchangeability and will 

be discussed in detail in the following section. 𝜀 ∈ [0,1] controls 

the threshold for transitions between the supermartingale and 

submartingale. From equations (2) and (5), 𝑀𝑛
(𝜀)

 is a martingale 

process once 

𝜀𝑝𝑖
𝜀−1 = 1 

 

(6) 

𝑝𝑖 = 𝑒
𝑙𝑛(𝜀)
1−𝜀  (7) 

 Also according to equation (3), (4) and (7), 𝑀𝑛
(𝜀)

 becomes a 

supermartingale when  𝑝𝑖 > 𝑒
𝑙𝑛(𝜀)

1−𝜀 , whereas 𝑀𝑛
(𝜀)

 becomes a 

submartingale when  𝑝𝑖 < 𝑒
𝑙𝑛(𝜀)

1−𝜀 . A submartingale occurs when the 

data points observed are no longer exchangeable and 𝑀𝑛
(𝜀)

 starts 

increasing. Once 𝑀𝑛
(𝜀)

 is larger than a defined threshold, the null 

hypothesis of no change is rejected, as seen in Figure 1(a). 

3.2 Martingale Framework for Change Detection  

Based on exchangeability testing, it is crucial to calculate p values 

that are representative of exchangeability. There are two main 

steps: strangeness and p value calculation. Strangeness measures 

how different a data point is from others with respect to a model 𝜆, 

which can be expressed for a data point 𝒙𝑛 as  

𝑠𝑛  = 𝑓(𝒙𝑛, 𝜆) (8) 

The larger 𝑠𝑛 is, the less likely the data point 𝑥𝑛 comes from the 

model 𝜆. Then the corresponding p value of  𝑠𝑛 can be calculated 

as follow [8]: 

𝑝𝑛(𝑋𝑛, 𝜃𝑛)  =  
#{𝑖: 𝑠𝑖 > 𝑠𝑛}  +  𝜃𝑛#{𝑖: 𝑠𝑖 = 𝑠𝑛}

𝑛
 (9) 

Where #{} is the number of elements satisfying the bracketed 

condition and 𝜃𝑛  [0,1] is a random number.  

If there is no change, the observed data points are all from 

the same model 𝜆, which implies similarity and exchangeability of 

𝑠1, … , 𝑠𝑛. Accordingly, the p values are uniformly distributed on 

[0, 1], and 𝐸(𝑝𝑛) = 0.5 > 𝑒
ln(𝜀)

1−𝜀 ∈ [0, 0.3679], depending on 𝜀. 

According to (5), 𝑀𝑛
(𝜀)

 is preferably a supermartingale and 

decreases with some fluctuations due to the fact that 𝑝𝑖 is random. 

Once observed data points are not exchangeable, strangeness 𝑠𝑛 

becomes larger and in turn 𝑝𝑛  in (9) has a smaller value. 

Accordingly, 𝑀𝑛
(𝜀)

 increases until reaching a predefined threshold 

over which a change is detected. Once a change is detected, 𝑀𝑛+1
(𝜀)

 

is reset to 1 and the detection restarts based on a new model trained 

using recent samples (50 samples in Figure 1 (a)). 

This martingale framework has three drawbacks. The first is 

that enough data points are needed for increasing 𝑀𝑛
(𝜀)

 until over 

the threshold, which leads to a delay, ranging from 100 to 200 data 

points [8]. The second one is that this method cannot handle 

change detection within a large time period because 𝑀𝑛
(𝜀)

 will be 

fairly small if the exchangeability remains for a long time. 

Preliminary experiments also showed that when this martingale 

method was directly applied in the emotion change detection 

context, its performance degraded possibly because a martingale 

using frame-based acoustic features may detect changes in 

phonemes [22]. Thus, a modified martingale-based method using 

emotion model is proposed in the following section.  

 

Figure 1: Comparison of original martingale (a) and proposed 

martingale (b). In this simplified example, samples are randomly 

generated from Gaussian distributions of two classes with mean 

shift of 1. The strangeness measure is the negative log likelihood of 
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a single Gaussian distribution trained using most recent 50 

samples after a change is detected for (a) and only the first 50 

samples for (b). The delay in (a) is the distance between the ground 

truth change points and the peaks of martingale values.  

3.3 Proposed Martingale Framework for Emotion 

Change Detection 

To resolve the aforementioned problems, a p value thresholding 

method is proposed which enforces floor and ceiling p values, and 

poses emotion change detection as a martingale turning point 

detection problem, in which peaks and troughs are the indicators of 

emotion changes, as seen in Figure 1(b): 

1) Extract frame-level d-dimensional acoustic features 𝒙𝑛 

from speech, with frame shifts of 10 ms. 
2) Calculate a strangeness value 𝑠𝑛, which is the negative of 

the log likelihood given the feature vector 𝒙𝑛  and a 

Gaussian mixture model 𝜆(𝝎, 𝝁, 𝑪). 

𝑠𝑛 = 𝑓(𝒙𝑛 , 𝜆(𝝎, 𝝁, 𝑪))

= − 𝑙𝑜𝑔 (∑ 𝜔𝑖

𝑚

𝑖=1

1

(2𝜋)
𝑑
2|𝑪𝑖|

1
2

𝑒
(−

1
2

(𝒙𝑛−𝝁𝑖)𝑇𝑪𝑖
−1(𝒙𝑛−𝝁𝑖))

  ) 
(10) 

3) Calculate p values based on 𝑠𝑛,  

𝑝𝑛 =  {
𝑝𝑠𝑢𝑏 ,              𝑠𝑛 ≥ 𝑆

𝑝𝑠𝑢𝑝𝑒𝑟 ,          𝑠𝑛 < 𝑆
 (11) 

where 𝑝𝑠𝑢𝑏 ∈ [0, 𝑒
𝑙𝑛(𝜀)

1−𝜀 )  and 𝑝𝑠𝑢𝑝𝑒𝑟  ∈ (𝑒
𝑙𝑛(𝜀)

1−𝜀 , 1]  are the 

parameters that activate the Randomized Power Martingales into 

submartingale and supermartingale respectively. S, a threshold for 

exchangeability, is an important parameter in the sense that a high 

S tolerates some data points that are less likely from model 

𝜆(𝝎, 𝝁, 𝑪), whereas a small S rejects some data points that are 

likely from model 𝜆(𝝎, 𝝁, 𝑪) . Both cases lead to unreliable 

transition between submartingale and supermartingale using (11), 

which in turn practically give rise to 𝑙𝑜𝑔 (𝑀) characteristics with 

incorrect turning points. To address this problem, S is calculated as 

a trade-off between distributions of two classes:  

𝑆 =
(𝑺𝑄

1 + 𝑺100−𝑄
2 )

2
 (12) 

Where 𝑺𝑄
1  denotes the 𝑄 %  percentile of all the strangeness 

values of class 1, estimated using ground truth from other speakers. 

One advantage of estimating S using (12) is that this can offer good 

separation between two classes, avoiding relatively large and small 

S to make sure that transition between submartingale and 

supermartingale occurs when there is a change. 

4) Calculate randomized power martingale log (𝑀𝑛) using (5). 

5) Detect turning points using two-pass linear regression.  

𝑘𝑝𝑎𝑠𝑡
𝑁1 ∗ 𝑘𝑓𝑢𝑡𝑢𝑟𝑒

𝑁1 < 0 (13) 

𝑘𝑝𝑎𝑠𝑡
𝑁2 ∗ 𝑘𝑓𝑢𝑡𝑢𝑟𝑒

𝑁2 < 0 (14) 

Where N1, N2 are the number of samples used to fit linear 

regressors to log (𝑀𝑛) for calculating the slope k. The approach 

rejects the null hypothesis of no change once (13) and (14) hold, 

and detects a change. The reason behind the two-pass linear 

regression is because only using a small 𝑁 can detect turning 

points more precisely in time but is vulnerable to noise, whereas 

only using a large 𝑁 is robust to noise but leads to large delay.  

Compared with the original martingale framework, the 

proposed approach formulates a turning point detection problem, 

which requires no threshold and reduces the delay (as seen in 

Figure 1). Moreover, the proposed method can handle non-change 

for a long time period, during which case 𝑙𝑜𝑔 (𝑀)  simply 

continues to increase or decrease until changing the direction when 

there is a change. Finally yet importantly, emotion model 𝜆 seems 

to improve the handling of phonetic variability. 
 

4. EVALUATION 

4.1. Database 

In this paper, we aim to detect changes between emotion categories 

(neutral vs emotional) as well as in dimensions (positive vs 

negative in arousal and valence). The IEMOCAP database, which 

comprises 12 hours of emotional speech from 10 speakers, was 

used. As ground truth for change points were not provided in the 

IEMOCAP database, a new database was constructed using the 

following scheme, as per [4]: 

 Concatenate same-speaker emotional utterances to generate 

ground truth change points 

 Further modify the database by removing small utterances 

(3s for emotion categories and 7s for emotion dimensions) 

and repeat the above step 

To investigate emotion categories, utterances of neutral, 

anger, sadness, happiness and excitation with majority consensus 

were selected. The latter four emotions were then merged into an 

“emotional” class (EMO). To investigate emotion dimensions, 

initially all utterances were selected (10039 utterances). Then 

numerical ratings were z normalized and thresholded into positive 

and negative respectively using thresholds of ±0.7, similar to [16], 

resulting in different datasets for arousal and valence (Table 1).  

Table 1. Partitions from IEMOCAP used for experiment. The 

voicing probability thresholds were the default 0.55 for MFCCs 

and 0.7 for eGeMAPS features [24], leading to different partitions 

for the two sets of features. 

 
MFCCs 

#changes 
eGeMAPS 

#changes 
+/emo -/neu +/emo -/neu 

EMO 3785 1698 186 3789 1697 224 

Arousal 1847 3063 123 1844 3073 207 

Valence 2808 3195 169 2807 3196 196 

4.2. Experimental Settings 

Two sets of frame-level acoustic features were extracted using the 

openSMILE toolkit [25]. The first set was 13 MFCCs and their first 

derivatives. The second set is the 28-dimension extended Geneva 

Minimalistic Acoustic Parameter Set (eGeMAPS) [10], a 

knowledge-based set of features, which are effective in emotion 

recognition tasks. Leave-one-speaker-out 16 mixture GMMs 

models (a trade-off between computational complexity and 

detailed description of emotions) for neutral or negative dimension 

(arousal/valence) classes were trained for the strangeness 

calculation (10). The threshold 𝑆 was estimated from 9 speakers 

using the GMM model. The baseline is the Generalized Likelihood 

Ratio (GLR) method [4] using a sliding dual windowing 

framework with one Gaussian (diagonal covariance) and window 

sizes of 1 second (for emotion categories) and 3.5 seconds (for 

emotion dimensions), based on the best results obtained using 

different window sizes. Within the proposed framework, there are 

a number of parameters such as 𝜀, 𝑝𝑠𝑢𝑏, 𝑝𝑠𝑢𝑝𝑒𝑟, Q, N1 and N2. 

Among these, 𝜀, 𝑝𝑠𝑢𝑏 and 𝑝𝑠𝑢𝑝𝑒𝑟 control how fast the 𝑙𝑜𝑔 (𝑀) 

increases and decreases, which does not affect the turning points 

and therefore performance is less sensitive to their choice.        

𝜀 was set to 0.92 in (5) according to [8]. 𝑝𝑠𝑢𝑏 and 𝑝𝑠𝑢𝑝𝑒𝑟, the 

parameters ensuring the randomized power martingale becomes a 

submartingale and a supermartingale, were set to 0.25 and 0.5 in 
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(11) respectively. The turning points are sensitive to choices of S. 

However, the method (12) proposed for calculating S offers a 

relatively good separation of two classes. Q for calculating 

threshold for strangeness values was set to 70% and 50% in (12) 

for comparison. This is because the proposed martingale 

framework requires no threshold, and changing Q leads to a 

different S and in turn different 𝑙𝑜𝑔 (𝑀) characteristics. In the 

two-pass linear regression, choices of N1 and N2 are related to 

accuracies of detecting turning points. N1 and N2 were set to 10 

and 60 empirically. The tolerance region for change detection was 

set to 1 second.  

4.3. Results 

4.3.1 Emotion Change Detection for Emotion categories and 

dimensions 

 
Figure 1: DET curves for the proposed martingale method and the 

baseline GLR method [4] using MFCCs and eGeMAPS feature set 

for detecting changes (a) between neutral and emotional speech; 

(b) between positive and negative arousal; and (c) between 

positive and negative valence. Q was set to 50 and 70, which leads 

to two operating points for the martingale-based method.  

Firstly, experiment was conducted comparing the proposed 

martingale and the baseline GLR method [4] for three different 

tasks, namely emotion change detection for neutral and emotional 

speech; positive and negative in arousal and valence. Regression 

based methods proposed in [5] are considered unsuitable for direct 

comparison. Consistent significant improvements over the baseline 

can be seen using the proposed martingale method. Large 

differences in performance were seen when detecting positive and 

negative valence for different Qs. The GLR method, which 

requires no prior knowledge of emotion, is not very effective for 

the neutral vs emotional change detection, possibly due to the fact 

that there are more salient emotion changes (e.g. change between 

anger and sadness within emotional speech), as well as phonetic 

variability. The martingale method, which tests exchangeability 

with respect to emotion model, showed that inclusion of prior 

knowledge of emotion is helpful. MFCCs were more effective in 

the GLR method, and it was found that within the martingale 

framework, MFCCs features are advantagous for arousal change 

detection, whereas interestingly the eGeMAPS feature set have a 

better performance in valence change detection.  

4.3.2 Tolerance Region Duration: a Trade-off between Temporal 

Resolution and Detection Accuracy 

  
Figure 2: Miss Detection Probability (thicker lines) and False 

Alarm Probability (thinner lines) vs tolerance region lengths for 

the three tasks using the feature set that provided the best 

performance within the proposed martingale framework. 

A tolerance region is essentially a temporal window around which 

a ground truth change point occurs [4]. Within this window, any 

detected changes are regarded as a correct detection. It allows a 

trade-off between temporal resolution and detection accuracy in 

change detection tasks, as seen in Figure 3. With a tolerance of 3s, 

all three tasks have MD probability lower than 10%, whereas FA is 

constant for all tolerance lengths, because the proposed method is 

based on turning point detection. 
 

5. CONCLUSIONS 
 

This paper has presented a martingale-based framework for 

emotion change detection by testing exchangeability. This 

framework poses change detection as a turning point detection 

problem, and a two-pass linear regression method was used to 

detect peaks and troughs. This is advantageous in terms of a lower 

delay, capacity to handle non-change over a relatively long time, 

and robustness to potential variability. Exchangeability of each 

frame was measured by using the negation of log likelihood of a 

GMM model. Experimental results demonstrate that performances 

were boosted over the baseline for both emotion categories and 

dimensions by using the proposed framework. 

Two limitations of this work are the limited possible 

operating points of the proposed approach and the database, in 

which all emotional utterances were concatenated and further 

modified for each speaker to create changes. Future work includes 

testing the proposed framework in more realistic databases. 

Moreover, novelty detection methods might be a good fit for this 

framework, because they require only one model to be effective. 

Rather than observing data points only at frame-level, turn-level 

functionals, successfully applied in emotion recognition previously 

to address phonetic variability, can potentially improve system 

performance. 
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