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ABSTRACT

Voice conversion (VC) aims to make one speaker (source) to sound
like spoken by another speaker (target) without changing the lan-
guage content. Most of the state-of-the-art voice conversion systems
focus only on timbre conversion. However, the speaker identity is
characterized by the source-related cues such as fundamental fre-
quency and energy as well. In this work, we propose an exemplar-
based sparse representation of timbre and prosody for voice con-
version that does not necessitate separately timbre conversion and
prosody conversions. The experiment results show that, in addi-
tion to the conversion of spectral features, the proper conversion of
prosody features will improve the quality and speaker identity of the
converted speech.

Index Terms— Voice conversion, exemplar, timbre, prosody,
sparse representation

1. INTRODUCTION

Human voice is a powerful and fundamental aspect of speaker i-
dentity. Each of us has a unique voice that reflects our age, our
size, even our lifestyle and personality. Voice conversion is a tech-
nique to modify the characteristics (timbre or/and prosody) of one
speaker (source) to make it sounds like spoken by another speak-
er (target) without changing the language content. As voice timbre
is characterized by spectral features, which plays a main role to i-
dentify the speaker individuality [1], most of the existing voice con-
version systems focus only on spectral conversion [2, 3, 4, 5, 6, 7,
8]. However, the previous study has shown that the source-related
cues play important roles in contribution in transmitting the speak-
er identity when the listener is familiar with the speaker [9]. The
source-related cues include fundamental frequency, energy, duration
of words, rhythm and so on.

There are many studies on spectral conversion. Frequency warp-
ing approaches apply a mapping function to shift source spectra to
match those of the target, such as dynamic frequency warping [11],
weighted frequency warping [10], and bilinear frequency warping
[2]. The drawback of frequency warping approaches is that the s-
peaker identity conversion quality is not satisfactory [2, 10]. Ex-
cept for frequency warping approaches, a great number of statis-
tical parametric approaches have been studied for spectral conver-
sion, such as vector quantization approaches [12], GMM-based ap-
proaches [3, 4], partial least square regression approaches [13], and
neural network based approaches [5, 6]. The statistical parametric
approaches convert speaker identity better than frequency warping
approaches, but the converted speech quality is unsatisfactory. The
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reason why converted speech quality degrades is mainly due to the s-
tatistical averaging problem and the usage of low-resolution features
[14]. To address these problems, exemplar-based voice conversion is
proposed recently [14, 15]. Exemplar-based voice conversion recon-
structs a speech spectrogram by a weighted linear combination of
high-resolution spectra. In order to avoid over-smoothing, the linear
combination weights are constrained to be sparse.

While spectral conversion has been extensively studied, prosody
conversion still remains to be a challenging research topic. As
prosody is affected by both short term dependencies and long term
dependencies, it is hard to model the variations of F0 in all tempo-
ral scales. Previous studies of prosody conversion concentrate on
converting the pitch of the source speaker to that of target speaker’s
F0 [16]. The most common approach is to transform the mean and
variance of F0 from source speaker to that of target speaker [17].
Some extensions of this approach are proposed such as GMM-based
mapping [19, 20], higher-order polynomial [18] and piecewise lin-
ear transformation based on hand-labelled intonational target points
[21]. Recently, continuous wavelets transform (CWT) is used for
the modeling and conversion of F0 in multiple time levels to obtain
promising results. In [22], F0 is decomposed into ten levels by
CWT, and wavelet levels 3-8 were converted using dynamic kernel
partial least square regression for voice conversion. In [23], a five-
scale CWT representation of F0 is used for prosody conversion of
emotional voice under the exemplar-based framework.

In this paper, instead of converting spectral and prosody features
separately, we propose to convert the spectrum, energy contour and
fundamental frequency (F0) simultaneously under a unique frame-
work of exemplar-based voice conversion. In order to capture and
convert the dynamics of F0 at different temporal levels, a five-scale
CWT representation of F0 is used for pitch conversion. To convert
spectral and prosody features simultaneously, we build a joint exem-
plar that consists of spectrum, aperiodicity component, energy and
the five-scale CWT representation of F0. A collection of acoustical-
ly aligned source and target joint exemplars, called source and target
joint dictionary, are constructed from the training data. In the con-
version stage, spectral and prosody features of new speech data are
approximated as a sparse linear combination (activation function) of
the source dictionary elements. The features of the target voice are
then constructed by applying the activation with the target dictio-
nary. The residual error from the source is then mapped to the target
using partial least square regression and added to the constructed
target. The system is evaluated objectively and subjectively. The ex-
periment results support the higher accuracy and the more efficiency
of the proposed method comparing with the conventional exemplar-
based voice conversion and the GMM-based voice conversion.

The rest of this paper is organized as follow: In section 2, we
introduce the basic idea of exemplar-based voice conversion. The
details of the proposed method are described in section 3. In sec-
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tion 4, the objective and subjective experiment results are presented.
Conclusions are drawn in Section 5.

2. EXEMPLAR-BASED VOICE CONVERSION

The basic idea of exemplar-based voice conversion is to describe a
magnitude spectrum as a linear combination of a set of basis spec-
tra, called exemplars. Let xi ∈ RF×1 represent the high resolution
spectrogram of a speech frame, where F is the dimension of the
spectrum. Then it can be expressed as

xi ≈
N∑

n=1

an · hn,i = Ahi s.t. hi ≥ 0. (1)

where an ∈ RF×1 is the n-th exemplar, hn,i is the n-th nonnegative
weight, A = [a1,a2, ...,aN ] ∈ RF×N is the dictionary of exem-
plar built form the training data, hi = [h1,i, h2,i, ..., hN,i] ∈ RN×1

is the activation vector. As each frame of spectrum is modeled inde-
pendently, the spectrum of an utterance can be expressed as

X ≈ AH, (2)

where X ∈ RF×M = [x1,x2, ...,xM ] is the spectrum, M is the
number of frames in the source spectrum and H ∈ RN×M =
[h1,h2, ...,hM ] is the activation matrix.

In this method, source dictionary As and target dictionary At

are firstly constructed. These two dictionaries consist of the same
words and are aligned with dynamic time warping (DTW). When
the source signal and the target signal are the same words spoken by
different speakers, they can be expressed with sparse representations
of the source dictionary and the target dictionary respectively, and
the obtained activity matrices are approximately equivalent [15]. For
this reason, the activation matrix H estimated from source spectrum
X and source dictionary As can be applied to target dictionary to
generate target spectrum:

Y = AtH. (3)

As the source spectrum and dictionary are both non-negative, the
non-negative matrix factorization (NMF) method [14, 15] is applied
to estimate the activation matrix. Mathematically, the activation ma-
trix is found by minimizing the following objective function:

H = arg min
H≥0

d(X,AsH) + λ∥H∥1, (4)

where λ is the sparsity penalty factor, and d(•) is the cost function.
Applying Kullback-Leigler (KL) divergence as the cost function, the
objective function in Eq. (4) can be iteratively minimized by the
following update rule:

H← H⊗
(As)T X

AsH

(As)T + λ
, (5)

where ⊗ represents element-wise multiplication and divisions are
also element-wise.

3. PROPOSED METHOD

This method can be applied to both spectrum and prosody conver-
sion under the framework of exemplar conversion. The details about
spectral and prosody features extraction, training and conversion are
described in the following.

Fig. 1. An example of the five-scale representation of F0.

3.1. Spectral and Prosody Features

Given the parallel source and target data, spectrum, aperiodicity
component and fundamental frequency are extracted from speech
signals using STRAIGHT [24] analysis method. Denote the spec-
trum and aperiodicity component as SP ∈ RF×M , AP ∈ RF×M

respectively. To capture the energy contour of the speech signal, the
energy of each frame is defined as

em =

√√√√ F∑
i=1

SP2
i,m ,m = 1, ...,M. (6)

By calculating the energy for each frame of a speech signal, we can
obtain the energy contour vector e ∈ R1×M .

It is well known that fundamental frequency is influenced both
at a supra-segmental level, by long-term dependencies, and at a
segmental-level, by short-term dependencies. Inspired by the work
in [25, 26], we adopt continuous wavelet transform to decompose
the F0 contour into several temporal scales that model prosody at
different temporal levels. The wavelet method is sensitive to the
gaps in the F0 contour, so we only consider the voiced part. In order
to explore the perceptual relevant information, the linear scale F0
contour is transformed to the logarithmic semitone scale. The log
F0 contour is normalized to zero mean and unit variance as required
by wavelet analysis, and we denote it as f0.

The continuous wavelet transform of f0 is defined by

W (τ, t) = τ−1/2

∫ ∞

−∞
f0(x)ψ

(
x− t
τ

)
dx, (7)

where f0(x) is the input signal and ψ is the Mexican hat mother
wavelet. We fix the analysis at 10 discrete scales, each one octave
apart. Then f0 is represented by 10 separate components given by

Wi(f0)(t) =Wi(f0)(2
i+1τ0, t)(i+ 2.5)−5/2, (8)

where i = 1, ..., 10 and τ0 = 5 ms. The original signal is approxi-
mately reconstructed by the following ad hoc reconstruction formu-
la:

f0(t) =
10∑
i=1

Wi(f0)(t)(i+ 2.5)−5/2. (9)

Attempting to relate the wavelet transform scales to levels of
linguistic structure [25, 26], adjacent scales are combined, which
result in a five-scale representation defined by

wi =W2i−1(f0)(t) +W2i(f0)(t), (10)
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where i = 1, ..., 5. An example of the five-scale representation of F0
is shown in Fig. 1. The lower scales (high frequencies) capture short-
term variations and that higher scales (low frequencies) capture long-
term variations. Thus, the five-scale representation can represent the
dynamics of F0 in different time scales. As exemplar-based voice
conversion requires non-negative features, the exponential value of
the five-scale representation w is used in the proposed method:

F0cwt = exp(w). (11)

3.2. Dictionary Construction

To align all the spectral and prosody features, we obtain Mel-
cepstral coefficients (MCCs) by applying Mel-cepstral analysis
technique [27] to the spectrum SP. By applying dynamic time
warping (DTW) to the source and target MCCs, the source-target
frame align information is obtained. According to the frame lev-
el synchronization relationship between different features and the
frame alignment information, we get the frame aligned source and
target spectral and prosody feature as sp1, sp2, ..., spk, ..., spK

ap1,ap2, ...,apk, ...,apK

e1, e2, ..., ek, ..., eK
f0cwt1, f0cwt2, ..., f0cwtk, ..., f0cwtK

, (12)

where sp ∈ RF×1, ap ∈ RF×1, and f0cwt ∈ R5×1 are the column
vectors from matrix SP, AP and F0cwt respectively, and e ∈ R+ is
an energy value from energy vector e.

With the acoustically aligned source and target features from
training data, we can build the the joint exemplars thus construct the
joint dictionary that consist of spectrum, aperiodicity component,
energy and the five-representation of F0. Denote the frame aligned
source and target spectrum, aperiodicity component, energy and five-
representation of F0 as SPs,APs, es,F0s

cwt, SP
t,APt, et,F0t

cwt
respectively, we propose to build a paired joint exemplar as

as =

 sps

aps

es

f0s
cwt

 , at =


spt

apt

et

f0t
cwt

 , (13)

where as ∈ R(2F+6)×1 is a super vector which represents a source
exemplar, and at ∈ R(2F+6)×1 is a super vector which repre-
sents a target exemplar. In the experiment, not all the exemplars
are used to build the dictionary. We randomly select a subset of
the paired joint exemplars to construct the coupled joint dictionary
As ∈ R(2F+6)×(N) and At ∈ R(2F+6)×(N). The process of
coupled joint dictionary construction is shown in Fig. 2.

3.3. Spectral and Prosody Feature Conversion

The aperiodicity component, energy and the five-scale representa-
tions of F0 are non-negative, and they can be represented as a linear
combination of basis exemplars the same as spectrum. Moreover,
the assumption that acoustically aligned source and target dictionary
can share the same activation matrix still valid here. So we can con-
vert spectrum, aperiodicity component, energy and fundamental fre-
quency simultaneously in the framework of exemplar-based voice
conversion.

Corresponding to the new joint exemplar, we need to redefine
each column of matrix X and Y in Eq. (2) and Eq. (3) as a joint
super-vector:

Fig. 2. The process of coupled joint dictionary construction.

x =

 sps

aps

es

f0s
cwt

 , y =


spt

apt

et

f0t
cwt

 , (14)

where sp,ap, e and f0cwt are the features extracted from one frame
of speech signal. In this way, Eq. (2) and Eq. (3) become:

X ≈ AsH, (15)
Y = AtH, (16)

where X ∈ R(2F+6)×(M) and Y ∈ R(2F+6)×(M) are the new fea-
ture matrix with each column a joint super-vector. Note that, apart
from feature dimension, Eq. (15) is the same as Eq. (3). Thus, we
can use the same method for activation matrix estimation described
in Eq. (5). Then the target joint spectral and prosody feature matrix
Y is generated according to Eq. (16).

There is inevitably some modeling error between the source ma-
trix X and the reconstructed AH, called residual. A mapping imple-
mented by partial least square regression (PLSR) [28] can be estab-
lished between the source-target residual pairs. The predicted resid-
ual is compensated to Y as described in [14].

By reforming the components of Y, we obtain the converted
spectral and prosody features SPc,APc, ec, and F0c

cwt. The loga-
rithmic value of F0c

cwt is calculated and the logarithmic scale con-
verted F0 contour is reconstructed according to Eq. (9). Then the
mean and variance of the converted logarithmic scale F0 contour are
normalized to those of the target speaker. Finally, the exponential
value of the logarithmic scale F0 is calculated to obtain the final
converted F0 contour.

In order to make the energy contour of converted spectrum more
close to that of the target, we take advantage of the information about
converted energy ec. Firstly, we take the converted spectrum SPc as
input to calculate it’s energy contour et according to Eq. (6). Then
the energy ratio for each speech frame is calculated as

r =
et

ec
, (17)

where the divisions are element-wise, and r ∈ R1×M . By replicat-
ing the energy ration vector, we get an energy ration matrix R ∈
RF×M . Finally, the energy contour improved spectrum is given by

SPc =
SPc

R
, (18)

where the divisions are also element-wise.
So far, we obtain the converted spectrum, aperiodicity compo-

nent and fundamental frequency. These three features are passed
to the STRAIGHT vocoder to reconstruct an audible speech signal.
The process of spectral and prosody feature conversion is shown in
Fig. 3.
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Fig. 3. The process of spectral and prosody feature conversion.

Table 1. The MCD of different voice conversion methods.
Source GMM NMF-SP Proposed Method

MCD (dB) 9.25 6.17 5.93 5.82

4. EXPERIMENTS

We conduct experiments using the CMU-ARCTIC [29] database to
assess the performance of the proposed method. Speech data from
two male speakers (bdl and rms) and two female speakers (clb and
slt) are selected to conduct experiments. Voice conversion is con-
ducted for all 12 speaker pairs. In each pair, 10 parallel utterances
are selected as the training data, and another 10 utterances are select-
ed as the development set. There are another 10 utterances selected
as the evaluation set.

To validate our proposed method, we consider the state-of-the-
art methods as our baselines, including the well established join-
t density GMM method with dynamic feature and global variance
[4, 30], and exemplar-based voice conversion which only convert-
s spectrum (NMF-SP) [14]. The fundamental frequency is linear-
ly converted by transforming the mean and variance in the baseline
methods.

4.1. Objective Evaluation

We use Mel-cepstral distortion (MCD) [4] of voiced part of speech
samples as the objective measure to assess the proposed method. The
average MCD result over all speaker pairs is reported. A lower MCD
value means smaller spectral distortion.

The MCD results for different voice conversion methods are
shown in Table 1. Comparing with GMM-based voice conver-
sion, the proposed method achieves a lower MCD, that is 5.82dB
over 6.17dB of GMM. This result confirms the effectiveness of the
exemplar-based voice conversion, and it is consistent with the re-
sult in [14]. Comparing the proposed method with exemplar-based
voice conversion which only converts spectrum, the MCD decreased
0.11dB. This confirms the effectiveness of the proposed method
and implies the importance of prosody feature conversion for voice
conversion.

4.2. Subjective Evaluation
We conduct listening tests to assess the performance of our proposed
method and the baseline methods in terms of speech quality and s-
peaker identity. In each test, 20 utterances are selected and 10 expe-
rienced listeners are involved.

We first conduct an AB preference test to assess speech quality.
Speech sample A and B are obtained by different methods with the
same input utterance. Speech A and B are presented to listeners in
a random order. The listeners are required to choose the sample that

Table 2. Comparing the proposed method with the GMM and the
NMF-SP methods by quality and similarity preference score with
95% confidence intervals.

Preference Score (%)
Quality Test Similarity Test

GMM 33 (±15.1) 38 (±11.1)
Proposed Method 55.5 (±14.3) 48.5 (±8.4)

No Preference 11.5 (±3.7) 13.5 (±7.5 )

NMF-SP 36 (±9.9) 34 (±9.0)
Proposed Method 47 (±11.7) 37.5 (±10.6)

No Preference 17 (±8.1) 28.5 (±7.5)

has higher speech quality. If they are not able to perceive the differ-
ence of voice quality, then they can choose the option that claiming
no preference.

Then, an ABX test is conducted to assess the speaker similarity.
Different from AB preference test, we have a reference target sam-
ple X. The listeners are asked to listen to the sample X first, then
A and B. Then, they are required to choose a sample that is more
closer to the target sample. If they are not able to decide which sam-
ple is closer to target, then they can choose the option claiming no
preference.

The subject test results are presented in Table 2. Firstly, the pro-
posed method is compared to GMM method. It is clear that the pro-
posed method achieves a much higher preference score comparing
to GMM method in both quality test and similarity test. The speech
samples with no preference are less than 15% for both quality test
and similarity test, which means there is a clear difference between
the results of this two method. Then, the proposed method is com-
pared to NMF-SP. We can see that the proposed method achieves a
significant higher preference score in both quality test and similari-
ty test. The above results confirm the effectiveness of the proposed
method, and they are consistent with the objective evaluation results.

5. CONCLUSION

We propose a method to convert the spectrum, energy contour, ape-
riodicity component and fundamental frequency simultaneously in
a sparse constrained exemplar-based voice conversion framework.
The objective and subjective experiment results show that, the con-
version of prosody features under exemplar-based voice conversion
framework will lead to lower spectral distortion and higher prefer-
ence score. The results suggest that in addition to spectral conver-
sion, proper conversion of prosody is also critical for voice conver-
sion.
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