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ABSTRACT

A cross-stream dependence modelling (CSDM) method has
been proposed to model the dependence of spectral distri-
butions on F0 observations for hidden Markov model (HM-
M) based speech synthesis. However, this method incorpo-
rates CSDM only for the embedded training of HMM esti-
mation while ignoring CSDM in the clustering of context-
dependent HMMs. This paper applies CSDM to HMM-based
singing voice synthesis and presents a decision-tree-based
model clustering method with explicit CSDM. This method,
in conjunction with the previous CSDM method, forms a ful-
l CSDM training framework. Experimental results demon-
strate that this full CSDM training framework achieves better
performance than the previous CSDM method and the base-
line without CSDM in a singing voice synthesis task.

Index Terms— hidden Markov model, singing voice
synthesis, linear transform, model clustering

1. INTRODUCTION

The hidden Markov model (HMM)-based speech synthesis
system (HTS) [1] is a popular solution to the lyrics-to-
singing synthesis task [2, 3]. HTS simultaneously models
the spectrum, F0 and other acoustic features with a unified
HMM framework [1, 4]. After model training, it predicts the
acoustic features [1] for input lyrics and music scores and then
re-constructs the singing voice signal using a vocoder.

Although the synthesized singing voice is of good quality,
it is still behind natural voice. One reason is the inconsistency
between the nature of acoustic signals and the assumptions
made in acoustic modelling. Typically, HTS assumes that
the spectral and F0 features are independent from each
other given HMM state sequences. However, researchers
have observed the influence of F0 on vowel articulation [5].
Specifically in singing, the singers may consistently increase
the frequency of the lowest resonance to match the pitch
[6, 7]. Apart from this, the influence of F0 on the extraction of
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spectral features cannot be completely removed by vocoders
[8]. Thus, the dependence between the two feature streams
may not be negligible.

To address this issue for singing voice synthesis, a previ-
ously proposed cross-stream dependence modelling (CSDM)
method for speech synthesis may be tried [8, 9]. Based on
a group of linear transforms [10], this method incorporates
observed F0 values into the mean vectors of spectral distribu-
tions at HMM states. After model training, this method can
predict the spectral features in accord with the variation of the
predicted F0 trajectory and thus increase the accuracy of the
predicted spectral features.

However, this method only uses CSDM in the embedded
training of model parameters while ignoring it in the decision-
tree-based model clustering. Furthermore, the clusters of CS-
DM parameters are simply determined based on the decision-
trees that are constructed without CSDM. To address this is-
sue, this paper proposes a decision-tree-based model cluster-
ing method with explicit CSDM. Then, a full CSDM training
framework for singing voice synthesis is presented by com-
bining this model clustering method with the CSDM-based
embedded training.

In the rest of the paper, Section 2 will describe the
previous CSDM method and the proposed full CSDM training
framework. Then, Section 3 will detail the experiments and
the results. Finally, Section 4 will draw the conclusion.

2. CROSS-STREAM DEPENDENCE MODELLING

2.1. The conventional CSDM method
Existing systems based on HTS assume that acoustic features
are generated by context-dependent HMMs. At time t, the
acoustic feature vector ot consists of a spectral part ct and
an F0 part pt [2, 3]. For an HMM state qt = j, wherein j
denotes the index of a context-dependent state before model
clustering, the probability to generate ot is given by a state-
dependent probability density function (PDF) bj(ct,pt). If
ct and pt are assumed to be independent, bj(ct,pt) can be
decomposed as bj(ct)bj(pt).

To model the cross-stream dependence for singing voice
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synthesis, our previous CSDM method [9] based on Continu-
ous F0 HMM (CF-HMM) [11] can be utilized. It assumes that
bj(ct,pt) = bj(ct|f t)bj(f t)bj(lt) wherein pt consists of a
continuous F0 feature f t and a binary voiced/unvoiced flag
lt. The conditional PDF bj(ct|f t), which models the cross-
stream dependence by a piecewise linear transform, is defined
as

bj(ct|f t) = N (ct;W rjξt + µc,sj ,Σc,sj ), (1)

wherein N (·) is a Gaussian distribution; ξt = [fT
t , 1]T is

the extended F0 feature vector; W rj = [Arj , brj ] is the
linear transform matrix for CSDM at state j and rj denotes
its cluster ID after model clustering; µc,sj and Σc,sj are
the residual mean and the covariance matrix at state j and
sj denotes their cluster ID. For neat expression, we define
λc,n = {µc,n,Σc,n}, λc = {λc,n}n=1,...,N , and λw =
{Wm}m=1,...,M , wherein N and M are the number of
clusters for these two sets of model parameters.

The training process of our previous CSDM method [9]
is shown on the left side of Fig.1. The conventional HTS
training without CSDM is conducted at first, wherein context-
dependent HMMs are clustered by decision trees [12] built
under minimum description length (MDL) criterion [13].
Then, the decisions trees for the spectral stream are copied to
cluster λc for the following CSDM training. Simultaneously,
these decision trees are pruned for clustering λw. Finally, λc

and λw of all clusters are estimated by the embedded training
with CSDM under maximum likelihood criterion [9].

2.2. The full CSDM training framework
Although our previous method [8, 9] incorporates CSDM
in the embedded training, it exerts rigid constraints on the
formation of λw clusters. For simplicity, we define S(n) =
{j : sj = n} as the set of states sharing the same cluster
λc,n and R(m) = {j : rj = m} as the states sharing λw,m.
Because the previous method directly uses the decision trees
given by the conventional HTS training process to cluster
λc while prunes these trees to cluster λw, it requires that
S(n) ⊆ R(m) if ∃i, si = n, ri = m. Furthermore, the
parameters in λc are clustered before the embedded training
with CSDM. The built decision trees may be incompatible
with the model parameters after the embedded training with
CSDM. Therefore, this paper presents a model clustering
method with CSDM. In this method, the parameters in λw

are clustered separately by building a decision tree under
MDL criterion with CSDM rather than consulting the pruned
decision tree of λc.

Practically, to avoid the prohibitive computation cost in
simultaneously growing the decision trees for λc and λw, the
proposed clustering process is decomposed into two iterative
steps. First, the decision trees for clustering λw are built with
λc and its decision trees fixed. Subsequently, the decision
trees for clustering λc are re-built with λw and its decision
trees fixed. Between the two clustering steps, the embedded
training with CSDM is conducted to re-estimate λc and λt.
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Fig. 1. Diagrams of the conventional CSDM training method
(left) and the proposed full CSDM training framework (right).

As a result, an iterative full CSDM training framework can be
formed as shown in Fig.1. Currently, the number of the full
training iterations is manually set.

2.2.1. Clustering λw with CSDM
The MDL criterion [13] is followed to build state-position-
dependent decision trees for clustering λw with CSDM. Here,
state position refers to the position of a state in a phoneme
HMM. Starting from a root note representing a global cluster
of λw, each leaf node splits into two nodes corresponding to
the “yes” and “no” answers to a question on the contexts of
HMMs. The MDL criterion is used to choose the optimal
question for each split and decide when to stop splitting.

If the decision tree, U , has M leaf nodes, wherein each
node represents a cluster of λw, the description length of U is

D(U) =−
M∑

m=1

∑
∀j,rj=m

T∑
t=1

γj(t) log bj(ct|ft)

+
αKM

2
log Γ + C

=
1

2

M∑
m=1

[
V(m) + L(m)

]
+
αKM

2
log Γ + C,

(2)

wherein K is the total number of parameters in Wm, α is
a hyper-parameter that controls the size of the built decision
tree, C is a constant, and

V(m) =
∑

∀j,rj=m

T∑
t=1

γj(t)
[
D log(2π) + log |Σc,sj |

]
, (3)

L(m) =
∑

∀j,rj=m

T∑
t=1

γj(t)(ct −Wmξt − µc,sj )T

·Σ−1c,sj (ct −Wmξt − µc,sj ),

(4)

wherein D is the dimension of spectral feature vector ct. The
state occupancy probability γj(t) of frame t at state j is fixed
during clustering [13], and Γ =

∑M
m=1

∑
∀j,rj=m

∑T
t=1 γj(t)

is the number of training frames belonging to the M nodes.
Suppose one leaf node m in U splits into two nodes

mq,y and mq,n in response to a question q, the change of
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description length due to this split can be calculated as

∆m(q)=D(U ′)−D(U)

=
1

2

[
L(mq,y)+L(mq,n)−L(m)

]
+
αK

2
log Γ.

(5)

Becauseλc and its decision tree are fixed, V(m) = V(mq,n)+
V(mq,y) and ∆m(q) does not rely on V . Under the MDL cri-
terion, the optimal question for nodem is q∗ = arg minq ∆m(q).
However, if ∆m(q∗) > 0, the node m is not allowed to split.
When all leaf nodes cannot split, the clustering process stops.

Evidently, the prerequisite for calculating ∆m(q) is to
estimate Wm, Wmq,y

, and Wmq,n
and then derive their

corresponding L in (4). Taking Wm as an example, its
estimation follows the formulae for the embedded training of
CSDM [9]. Specifically, if Σc,sj is diagonal, Wm can be
estimated on a row-by-row basis, wherein the d-th row of the
estimated Ŵm is

ŵ(d)
m = kTm,dG

−1
m,d, (6)

wherein

Gm,d =
∑

∀j,rj=m

T∑
t=1

γj(t)

σ
(d)
c,sj

ξtξ
T
t , (7)

km,d =
∑

∀j,rj=m

T∑
t=1

γj(t)

σ
(d)
c,sj

(c
(d)
t − µ(d)

c,sj )ξt, (8)

and c(d)t , µ
(d)
c,sj and σ(d)

c,sj are the d-th element of ct,µc,sj and
the diagonal vector of Σc,sj , respectively. Given Ŵm, L(m)
can be calculated as

L(m) =

D∑
d=1

(cm,d − kTm,dG
−1
m,dkm,d), (9)

where
cm,d =

∑
∀j,rj=m

T∑
t=1

γj(t)

σ
(d)
c,sj

(c
(d)
t − µ(d)

c,sj )2. (10)

Because γi(t) is fixed, the statistics in (7), (8), and (10) can
be efficiently accumulated based on the statistics collected in
advance for the states belonging to the m-th cluster.
L(mq,y) and L(mq,n) can be calculated in the same way.

Then, ∆m(q) can be evaluated and the clustering process can
be launched.

2.2.2. Clustering λc with CSDM
After clustering λw, the parameters in λc and λw are re-
estimated by embedded training with CSDM. Then, λc can
be re-clustered under the same MDL criterion for clustering
λw. Because λw is fixed, it is easy to testify that to cluster the
spectral distributions for ct with CSDM into consideration is
equivalent to directly clustering the spectral distributions for
c̃t = ct −W rjξt that approximates the pitch-normalized
spectral observation at frame t [14]. It is also possible
to testify that, after clustering λw, embedded training with
CSDM, and collecting the state occupancy probabilities γi(t),
the conventional clustering method in HTS can be used to
cluster the Gaussian distributions for c̃t, or parameters in λc,
as shown in Fig.1.

3. EXPERIMENTS
3.1. Corpus preparation
The database for experiments contains male solo singing
recordings of Mandarin pop songs. The training set consists
of 1000 randomly selected singing utterances and is about 70
minutes in length. The test and validation sets contain 100
utterances each. The spectral feature vector ct consists line
spectrum pairs (LSP) of order 40 derived from the spectral
envelopes extracted by the STRAIGHT vocoder [15], an extra
gain dimension and their delta and delta-delta coefficients. F0
was also extracted by STRAIGHT. Statistic show that 95% of
the F0 data are in the range of 143-352 Hz (pitch note D3 to
F4). For the systems based on CSDM, these F0 values were
interpolated into continuous trajectories [9].

3.2. System construction
Three types of experimental systems in Table 1 were con-
structed. All the systems used the initial/final of the Mandarin
syllable as the acoustic unit. The contexts of acoustic units in-
cluded phonemic, melodic and linguistic features, which were
similar to those defined in [2]. Every context-dependent unit
was implemented as a 5-state left-to-right HMM with Gaus-
sian state distributions and diagonal covariance matrices. To
reduce the number of free parameters, the matrixAm in each
Wm for cCS and fCS was defined as a three-block matrix
[16] wherein each block models the dependency of the static,
delta, or delta-delta spectral features on F0 features.

For fCS, the MDL factor α for clustering λc was 1.
Meanwhile, α for clustering λw was tuned to 48 based on
fCS-1’s likelihood on the validation set, which was similar to
the method in [16]. Then, this α was fixed for fCS-2 and fCS-
3. Table 2 shows the cluster numbers of λw and λc for fCS-n.
To ensure a fair comparison, the α for clustering λc in BS
and cCS was tuned to 0.97 so that the number of λc clusters
is comparable to that of fCS. The number of the λw clusters
of cCS was tuned to a similar number as fCS-3 by manually
controlling the size of the pruned decision trees for λw.

All the systems used the duration of the natural recordings
for the objective and subjective evaluations. For cCS and fCS,
natural F0 of the test set and synthetic F0 predicted by an
independently built system with pitch-adaptive training [17]
were used to predicted LSPs. The formulae to predict LSPs
given models trained with CSDM can be found in [8].

Table 1. Experimental Systems.
ID System description
BS The baseline HTS system without using CSDM
cCS The system using the conventional CSDM training method
fCS The system using the full CSDM training method. fCS-n

denotes fCS after the n-th full CSDM training iteration.

Table 2. Cluster numbers in λw and λc for different systems.
BS cCS fCS-1 fCS-2 fCS-3

# clusters for λw - 54 30 39 54
# clusters for λc 5169 5169 5016 5141 5161
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Fig. 2. The likelihoods on training set (line) and the LSP
RMSEs on test set (bar) for different systems.

3.3. Objective evaluation
All the systems’ likelihoods on the training set are shown by
the line chart in Fig.2. Evidently, the likelihood of fCS rises
consistently after each iteration of the full CSDM training.
Fig.2 also shows the RMSEs of LSP prediction wherein the
RMSE was calculated based on the method in [9]. A series
of t-tests demonstrate that the RMSE of BS is significantly
larger (p < 0.05) than the other systems using either natural
or synthetic F0, except cCS using synthetic F0. Meanwhile,
the RMSEs of fCS-n are significantly lower than those of cCS.

To inspect the objective results further, Fig.3 shows the
RMSEs on the 1st to 6th and the 13th to 20th dimension of
LSP. As Fig.3(a) demonstrates, both cCS and fCS-3 can cap-
ture the cross-stream dependence for the 1st to 6th dimen-
sion of LSP. Furthermore, fCS-3 can reduce the RMSEs of
the 13th to 20th dimension of the predicted LSP. By examin-
ing the spectral envelopes and LSPs of some data frames, we
find that the 13th to 20th dimension of LSP generally corre-
spond to the second formant of the singing voice in our da-
ta. Fig.3(b) demonstrates that, when a synthetic F0 is used,
fCS-3 and cCS’s RMSEs on the 1st to 6th dimension of LSP
increased while RMSEs on the 13th to 20th dimension stayed
almost the same. One reason may be that the lower dimen-
sions of LSP are sensitive to the small fluctuations of F0 in
the singing voice such as overshooting and vibrato. Thus, the
1st to 6th dimension of the predicted LSP may be degraded
by the over-smoothed synthetic F0.

Because the RMSEs of cCS and fCS-3 on the other
dimensions of LSP were almost the same, they are not plotted
in Fig.3. These dimensions of LSP may correspond to the
parts of the spectrum that are insignificantly affected by F0.

3.4. Subjective evaluation
fCS-3 was compared with cCS and BS in subjective preference
tests. In total, 12 native Mandarin speakers were invited
to evaluate 20 randomly selected synthetic samples given
by each system. The results are shown in Table 3. When
natural F0 is used, fCS-3 achieves better performance than
cCS. However, the proportion of no preference is above
40%. One reason may be that, although fCS predicts LSPs
more accurately, the increased accuracy may not lead to
perceivable improvement on the quality of some synthetic
samples. The comparison between fCS and BS shows similar
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Fig. 3. RMSEs of the 1-6th and 13-20th LSP dimensions on
the test set. The RMSEs of BS are the same in (a) and (b).

results. Additionally, an informal test suggests that the cCS is
not significantly different from BS, which is consistent with
the our previous observations [8][9].

With synthetic F0, the performance of fCS-3 drops while
the proportion of no preference increases. The primary reason
may be that the over-smoothed synthetic F0 degrades the
accuracy of the lower dimensions of the predicted LSPs as
Fig.3(b) demonstrates. Meanwhile, the synthetic F0 may
make the synthetic samples out of tune and thus affects the
perceived quality.

Nevertheless, all the results suggest that the proposed
method models the cross-stream dependence better than the
conventional CSDM method and the baseline method.

4. CONCLUSION

This paper presented a full CSDM training framework with
a novel model clustering method incorporating CSDM. Ex-
perimental results demonstrated that the proposed framework
achieved better performance than the conventional CSDM
training framework. We also used this full CSDM framework
to train a speech synthesizer for reading news. However, the
improvement was insignificant. This may be due to the small-
er F0 dynamic range of that speech corpus. For singing syn-
thesis, the performance of CSDM could be further improved
if a better F0 generation model such as the one leveraging
lyrics information [18] could be incorporated. More general-
ly, non-linear model may be tried in order to boost the power
of CSDM. Besides, the soft-decision approach [19] for clus-
tering CSDM may also be useful to ensure smooth change of
CSDM parameters across adjacent HMM states.

Table 3. Results of subjective evaluation.
BS cCS fCS-3 No pref. p

Natural F0
- 20.0% 37.1% 42.9% 0.0004

19.1% - 37.9% 42.9% <0.0001

Synthetic F0
- 22.5% 31.3% 46.2% 0.064

22.1% - 30.8% 47.1% 0.062
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