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ABSTRACT

In statistical parametric speech synthesis such as Hidden
Markov Model (HMM) based synthesis, one of the problems
is in the over-smoothing of parameters, which leads to a muf-
fled sensation in the synthesised output. In this paper, we
propose an approach in which the high frequency spectrum is
modelled separately from the low frequency spectrum. The
high frequency band, which does not carry much linguistic
information, is clustered using a very large decision tree so as
to generate parameters as close as possible to natural speech
samples. The boundary frequency can be adjusted at synthe-
sis time for each state. Subjective listening tests show that
the proposed approach is significantly preferred over the con-
ventional approach using a single spectrum stream. Samples
synthesised using the proposed approach sound less muffled
and more natural.

Index Terms— HMM-based speech synthesis, sub-band,
over-smoothing, factorised speech representation

1. INTRODUCTION

Statistical parametric speech synthesis, while outperforming
unit selection systems in terms of discontinuity artefacts and
ability to cope with sparse data, is known to have problems of
over-smoothing, which lead to a muffled sensation in the syn-
thesised output. Several approaches have been proposed to
address this problem in the domain of Hidden Markov Model
(HMM) based synthesis. (See [1] for an overview.) There are
two main directions to overcome this problem: one by im-
provements in statistical modelling and the other in vocoding.
This paper focuses on the former.

Many hybrid approaches combine waveform-based and
HMM-based synthesis, combining the benefit of naturalness
of the waveform-based approach and the smoothness of the
HMM approach. In [2], HMMs are used to generate the
parameters which are then used to select the best matching
waveform segments. Other studies [3, 4] have investigated
mixing HMM-based and waveform-based speech segments in
the time domain, but this can lead to voice quality mismatch
as the segment switches from one type to the other.

In this paper, we propose an approach entirely within
the HMM-TTS framework, in which the spectrum is mod-

elled in multiple streams, separated in the frequency domain.
The work is motivated by prior knowledge that the spectral
envelope in the low frequency region carries linguistically im-
portant information, whereas the region above is mostly free
of such constraints and is assumed to reflect the resonances
of the vocal tract, thereby carrying predominantly speaker
information [5]. Previous studies in voice conversion [5, 6]
have exploited this, and split the spectral envelope into two
frequency bands in order to change the speaker characteris-
tics without affecting intelligibility. In the domain of speaker
identification, [7] found that speaker identification perfor-
mance could be improved by splitting the spectrum in the
frequency domain and utilising the higher frequency portion
for training the models.

In HMM-TTS, the spectrum is usually modelled as one
stream. Given that the high frequency regions carry relatively
little information about the linguistic content, it can be hy-
pothesised that better quality may be achieved by splitting the
spectrum stream into high/low frequency bands and cluster-
ing the contexts separately. In addition, if the decision tree
for the high frequency spectrum is allowed to grow infinitely,
this becomes almost equivalent to using natural speech sam-
ples in the high frequency band, thereby reducing the over-
smoothing effect.

An approach has been proposed in [8, 9] which com-
bines sample-based spectrum in the high frequency band
with statistically generated spectrum in the low frequency
band. They used a cepstral representation of speech and
implemented measures to overcome the mismatch caused by
concatenating the amplitude spectra. The method proposed in
the current paper differs from the above approach in that both
frequency bands are modelled by HMMs, thus removing any
complications with concatenating a statistically generated
spectrum with a sample-based spectrum and coping well with
data sparsity. The decision tree for the high frequency band
is allowed to grow infinitely, thereby yielding rich models as
close as possible to natural speech. MLSP (Mel-scaled line
spectral pairs) parameterisation is employed, so at synthesis
time, the low and high frequency spectral parameters can be
concatenated to generate the full-band spectral envelope. The
splitting boundary can be adjusted state-by-state at synthesis
time according to the boundary decision pertaining to each
leaf of the decision tree.
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2. MULTI-STREAM SPECTRUM MODELLING

2.1. Motivation

The multi-stream approach for spectral representation is moti-
vated by previous work in voice conversion and speaker iden-
tity, where factorisation of linguistic information and speaker
information is essential. Whilst a complete factorisation may
not be possible due to some degree of speaker characteristics
being present in the low frequency band and some linguistic
information being present in the high frequency band (e.g. for
sibilants), it can be assumed that the the two frequency bands
have different contextual variations that would be better mod-
elled separately.

In [5], it was found that the frequency band between 12-22
ERB (Equivalent Rectangular Bandwidth) rate, equivalent to
603-2212Hz, contains vowel characteristics, and the spectral
envelope above this range contains mainly speaker individu-
alities. According to [10], the average range of the second
formants of the cardinal vowels for a male voice is between
595Hz and 2400Hz. The frequencies can be even higher for
female voices, sometimes extending beyond 2500Hz depend-
ing on the speaker and language.

In accent morphing between two speakers with selective
morphing in the frequency domain [6], it was found that the
best intelligibility was achieved when the spectrum was split
at 3.5kHz with a 1kHz transition band in which the spectral
characteristics between the two speakers were interpolated.
In this condition, all spectral information above 4kHz came
from the target speaker.

In the current work, the same frequency boundary Fb=4kHz
was adopted and translated into LSP coefficient ωb.

2.2. Decision tree

In HMM-TTS, decision trees are used to control the state-
tying of context-dependent models, and the Minimum De-
scription Length (MDL) stopping criterion [11] is often used
to control the tree size. An increase in tree size leads to fewer
samples in the leaf nodes and hence alleviates the averaging
effect. The tree size can be increased by reducing the MDL
threshold and the minimum leaf node occupancy.

The low frequency spectrum needs to be modelled with a
robust decision tree in order to handle sparseness in the train-
ing corpus. The high frequency spectrum, on the other hand,
is less affected by contextual factors and thus its tree can be
allowed to grow infinitely.

2.3. Flexible boundary coefficient

In the simplest case, the same splitting boundary coefficient
ωb can be used for every state. For example, in the case of
data sampled at 22.05kHz and with 39th order MLSP coef-
ficients, Fb of 4kHz roughly corresponds to ω14. However,
the index of the LSP coefficient corresponding to 4kHz will

vary from state to state. More generally, it can be assumed
to vary depending on the phone type and the context. Using
decision trees, a cluster-dependent approach can be adopted
in determining the boundary coefficient for each state to be
synthesised. For each cluster of the low frequency spectrum
decision tree, the distribution of the corresponding frequen-
cies for each LSP coefficient ω around Fb (e.g. 4kHz) are
collected for all the training samples belonging to that cluster.
Then the lowest coefficient for which the median exceeds Fb

is set as the threshold coefficient ωb for that cluster. The deci-
sion tree for the low frequency spectrum rather than the high
frequency spectrum is used to guide this decision, due to its
relative robustness and because it is more likely to represent
phone types than the high frequency spectrum tree which, in
the extreme case, represents a single context.

In order to allow for a soft decision on the boundaries, the
high and low frequency spectral streams are split in such a
way as to overlap in the region around Fb. The overlapping
band can be decided through analysis of the training data, us-
ing a full-band model. Statistics of spectral frequencies for
the entire database excluding silences were collected and a
histogram was plotted, as shown in Fig. 1. All coefficients
spanning the region 3.5kHz to 4kHz were selected as the over-
lapping band. In the case of a 22.05kHz model with 39 ML-
SPs, the overlapping coefficient band was set to ω12 to ω17,
so the low frequency stream (spl) consisted of ω1 to ω17 and
the high frequency stream (sph) consisted of ω12 to ω39, as
shown in Fig. 2. The log gain was included in the low fre-
quency stream as part of the MLSP vector.

Fig. 1. Distribution of MLSP coefficients for the training data
in the region of interest (ω10 to ω18), plotted to determine
the overlapping frequency band for the multi-stream HMM.
Sampling frequency 22.05kHz, 39th order MLSPs.

2.4. LSP parameterisation

The use of LSP coefficients to represent the spectrum facili-
ates the multi-stream approach. It is possible to simply con-
catenate the high and low frequency coefficients generated
from separate streams. Using the cepstrum representation,
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Fig. 2. Diagram showing the overlap in MLSP coefficients
between the low (spl) and high (sph) frequency streams.

splitting the frequency regions would be more difficult, as
each cepstral coefficient affects all the frequency components
of the spectrum.

3. EXPERIMENT

3.1. Data and Parameterisation

Utterances in US English recorded by a professional female
speaker in a recording studio were used. 4518 utterances were
used for training, leaving aside 500 sentences for testing. The
recordings were originally sampled at 48kHz, and later down-
sampled to 22.05kHz. The waveforms were then parame-
terised using 39 dimensional MLSP coefficients with deltas,
ln F0 with first and second order deltas and 20 linear-scale
band aperiodicities with deltas. The spectrum was obtained
with a pitch-synchronous analysis, and the aperiodicity with a
pitch-scaled harmonic filter (PSHF) [12]. In the multi-stream
models, the MLSP coefficients were further decomposed into
two streams as shown in Table 1.

3.2. Models

The observation vectors were used to train HSMMs with 5
states. Standard full context-dependent models were trained,
with several iterations of context clustering. The stream
weight set to 1.0 for all but the band aperiodicity stream, for
which the stream weight was set to 0.0. Table 1 summarises
the differences between the three models tested.

spectral MDL number of
stream(s) thresh. leaves

Baseline log K, ω1, ... ,ω39 1.0 5784
Multi-stream log K, ω1, ... ,ω17 1.0 6583
(flexible ωb) ω12, ... ,ω39 0.0 598510
Multi-stream log K, ω1, ... ,ω14 1.0 6703
(fixed ωb) ω15, ... ,ω39 0.0 600339

Table 1. Overview of the spectral stream settings of the models.

3.3. Synthesis

For the multi-stream models, the generated LSP parameters
are first combined to form the full band LSP. For multi-stream
HMM with flexible ωb, the boundary is determined for each
state as described in Section 2.3. For multi-state HMM with

fixed ωb, the boundary was set to ω14. Post-filtering is ap-
plied, and the LSPs are checked for stability and the orders
are rearranged if necessary. The LSPs are then converted to a
minimum phase impulse response, while the band aperiodic-
ities and ln F0 are used to generate a mixed excitation signal.
Finally, synthesis is performed by convolving the excitation
signal with the minimum phase impulse response.

3.4. Evaluation setup

Subjective evaluation was carried out in the form of two pref-
erence tests. The first test compared the baseline HMM sys-
tem against the proposed multi-stream HMM with a flexible
boundary. 13 listeners took part, each listening to 30 pairs of
utterances, making up a total sample number of N=390.

The second test compared the effect of using a flexible
split boundary as opposed to a fixed boundary in the multi-
stream approach. This was to investigate whether determin-
ing the split boundary on a state-by-state basis may introduce
artefacts which degrade the quality of output speech. 12 lis-
teners took part, each listening to 30 pairs of utterances, mak-
ing up a total sample number of N=360.

4. RESULTS

The results of the preference tests are shown in Table 2. The
preference test comparing the baseline with the proposed
system with a multi-stream spectral representation (flexi-
ble boundary) showed that there is a significant preference
(p < 0.05) for the proposed system. The test comparing
flexible versus fixed boundary showed that there is a statisti-
cally significant preference for the model with the boundary
determined on a state-by-state basis.

Baseline Multi-stream Multi-stream No pref. p score
(flexible ωb) (fixed ωb)

34.4% 45.6% - 20.0% 0.013
- 41.1% 29.7% 29.2% 0.009

Table 2. Results of preference tests.

Fig. 3 shows the log magnitude for a frame in a test utter-
ance. It can be seen that the peaks and valleys in the natural
speech are clear, whereas the spectrum of the baseline HMM
is relatively flat, especially in the high frequency band. The
proposed multi-stream HMM generates relatively clear peaks,
leading to less muffled speech.

Fig. 4 shows the trajectory of LSP coefficients over a test
utterance. In natural speech (a), finer details can be observed
in the LSP trajectories, especially in the high frequency band.
In contrast, the trajectories are smoothed out in the HMM-
generated parameters, especially in the baseline system (b).
In the proposed system (c), LSPs in the region above roughly
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Fig. 3. Log magnitude spectrum for a frame from an utterance
in the test set. HMM parameters were generated with features
generated using aligned duration.

4kHz are generated using a large decision tree. This is man-
ifested in the increased level of fluctuation in the high order
LSPs, compared to the baseline system. This leads to an in-
creased sensation of naturalness.

In order to confirm that the improvement did not come
from simply having a large decision tree, a model was trained
without splitting the spectral stream but allowing the decision
tree to grow to a size equivalent to the total size of the spectral
decision trees for the multi-stream model (600k leaf nodes).
As expected, the resulting samples suffered from artefacts at-
tributable to over-splitting of the training data. This confirmed
our hypothesis that the high frequency spectrum is relatively
free of contextual dependencies and do not need to be mod-
elled in the same way as the low frequency band.

5. DISCUSSION AND CONCLUSION

The study showed that it is possible to improve the quality
of synthesised speech by modelling the high frequency spec-
trum and low frequency spectrum in separate streams. By
using a large decision tree to cluster contexts in the high fre-
quency band, the high frequency spectral characteristics ap-
proach those of natural samples, and the muffled quality typ-
ical of HMM-TTS samples are alleviated.

Future work includes improving the stability of the LSPs
around the state boundaries where ωb may change from one
coefficient to another, and reducing the footprint whilst aim-
ing to achieve the same naturalness. Given that the high fre-
quency spectrum is influenced not by detailed phonetic con-
texts but rather by more generic phone categories (e.g. frica-
tive, vowel), using a different set of questions for the high
frequency spectral stream may also be an area to be explored.
In recent years, Deep Neural Network (DNN)-based TTS has
been shown to outperform HMM-TTS. With this in mind, we
also plan to apply the concept to DNN-TTS.

(a) Natural

(b) Baseline HMM

(c) Multi-stream HMM (flexible boundary)

Fig. 4. LSP trajectory for an utterance in the test set, (b) and
(c) synthesised with features generated using aligned dura-
tion.
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