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ABSTRACT

Forced alignment for speech synthesis traditionally aligns a phoneme
sequence predetermined by the front-end text processing system.
This sequence is not altered during alignment, i.e., it is forced,
despite possibly being faulty. The consistency assumption is the
assumption that these mistakes do not degrade models, as long as
the mistakes are consistent across training and synthesis. We present
evidence that in the alignment of both standard read prompts and
spontaneous speech this phoneme sequence is often wrong, and that
this is likely to have a negative impact on acoustic models. A lattice-
based forced alignment system allowing for pronunciation variation
is implemented, resulting in improved phoneme identity accuracy
for both types of speech. A perceptual evaluation of HMM-based
voices showed that spontaneous models trained on this improved
alignment also improved standard synthesis, despite breaking the
consistency assumption.
Index Terms: speech synthesis, TTS, forced alignment, HMM

1. INTRODUCTION

An essential preprocessing step of the speech data for text-to-speech
synthesis (TTS) is alignment. That is the segmentation of raw speech
waveforms into the phonemes of the utterance for the purpose of
later use as units in unit selection synthesis, or to train models for sta-
tistical parametric speech synthesis (SPSS). Alignment is normally
performed using an automatic method called forced alignment, as
manually aligning speech is both expensive and error-prone [1].

In English speech synthesis, the standard forced alignment
procedure lets the TTS front-end produce a phonemisation which
the algorithm is then forced, hence the name, to find boundaries
of in the acoustics. This phonemisation may be incorrect and the
phonemes wrong, e.g. when reductions or deletions occur. As such
the phonemes may not exist in the utterance, although due to the
forced nature of the method these will still be “found”. This is not
a major issue in unit selection as the join cost will discourage any
badly aligned units from being selected. In SPSS a join cost is not
used, but it is usually assumed that the phonemisation is sufficiently
close to correct that this is not an issue. As a consequence, it is
assumed that any bad units are either averaged out as “noise”, or
that by being consistent across training and synthesis mismatches
will not affect output speech. This is what we here call the con-
sistency assumption between training and synthesis, namely that
making the same mistakes consistently may “accidentally” have
positive effects, such as appropriate phoneme reductions [2]. The
assumption may be an extrapolation from automatic speech recog-
nition, in which manual alignments do not improve word error rates

over forced alignment [3], but to the best of our knowledge this
has not been directly tested in synthesis. [4] provides evidence that
the assumption holds but does not discuss the finding as their focus
was on retaining the consistency. Furthermore, for SPSS based on
spontaneous conversational speech data, it is worth noting that there
are significant differences between the appearance of conversational
phenomena in standard read prompts and spontaneously produced
speech [5, 6, 7, 8, 9, 10]. Thus forced alignment could produce
more, and more serious, errors than when aligning read speech,
which may impact synthesis quality. Earlier work on spontaneous
TTS admitted problems with speech alignment [11, Ch. 3]. This was
solved through data selection, artificial stretching of the spontaneous
speech and a proprietary alignment system which we do not have
the details of. Unfortunately, no evaluation of this was performed.

In fact, a recent study in French [10] has demonstrated that cor-
recting these differences can lead to improved synthesis quality. Us-
ing a corpus of sports commentaries [12] with hand-corrected align-
ment, an improvement in synthesis quality was achieved when using
these manually corrected phonemisations for training and synthesis
[10]. This shows that manually corrected transcriptions can benefit
synthesis. It is, however, unclear whether this is due to the better
phoneme accuracy in the alignment or due to a more natural pro-
nunciation during synthesis. This paper’s focus is on the first issue,
whether better phoneme accuracy can improve standard synthesis
despite being inconsistent across training and synthesis.

In Section 2 we present evidence that the standard phonemisa-
tion and forced alignment procedure produces many, and serious,
mistakes, particularly with respect to spontaneous speech. In Sec-
tion 3 the pronunciation variant alignment procedure is presented
and objectively evaluated. Section 4 describes a perceptual evalua-
tion of the resulting synthesis systems. The results are discussed in
Section 5 before concluding in Section 6.

2. FORCED ALIGNMENT ACCURACY

In order to support the claim that spontaneous speech is less confor-
mative to standard phonemisations than read speech, and to obtain
a gold standard development set, the small corpus of read and spon-
taneous sentences from [13] was analysed. The corpus contains 50
sentences which were uttered in a normal conversation by a British
English female voice talent. These sentences were orthographically
transcribed and subsequently given to the voice talent to read aloud
as standard prompts (the talent was unaware that she had uttered
these sentences earlier) to obtain read-speech versions of them. The
read and spontaneous versions of these 50 sentences thus contain
exactly the same content and only differ in their acoustic realisation.
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Del Add Sub Total PER
Read

Automatic 149 10 151 310 19.1%
Annotator 1 33 30 69 132 8.1%
Annotator 2 3 9 36 48 3.0%
Annotator 3 77 62 123 262 16.1%

Spontaneous
Automatic 202 17 180 399 25.2%
Annotator 1 11 15 42 68 4.3%
Annotator 2 4 15 18 37 2.3%
Annotator 3 142 46 131 319 20.1%

Table 1. Overall differences between the agreed gold phonemisa-
tion, the standard automatic system and the annotators, with the gold
phonemisation used as reference in each case. PER = Phone Error
Rate.

2.1. Gold Standard Alignment

To create a gold standard phonemisation we first obtained an auto-
matic alignment of the corpora and then manually corrected it. The
automatic alignment was done using a large British English female
Average Voice Model created using the Voice Cloning Toolkit [14]
and adapting it to a corpora of 1176 read or 1146 spontaneous sen-
tences from the voice talent speaker. The standard phonemisation
was obtained using Festival and the RP British English version of
the Combilex dictionary [15, 16]. For the spontaneous speech the
transcription also included pausing, information which was provided
for the model as it helped alleviate the cascading issue (see Section
2.3). Alignments of the 50 critical sentences of each type were then
obtained using the respective models.

Next, the automatic alignments were independently manually
corrected by two annotators. Where these hand-corrections dis-
agreed the labellers met to discuss and agree upon a final phonemi-
sation. In questions about whether to keep or to change the original
Festival phonemisation, the Festival phonemisation was often pre-
ferred. Since human labellers correcting automatic transcriptions
are biased toward the initial transcription [1], this agreed upon
phonemisation is thus doubly biased toward the standard Festival
phonemisation. To see the effect of this bias, a third transcriber
corrected the output of the pronunciation variant system we propose
(see Section 3). Finally, it is worth noting that the focus was on
phoneme identity and not phoneme boundary; thus phoneme bound-
aries were only corrected if grossly incorrect, e.g., when a phoneme
was deleted.

2.2. Transcriber Accuracy

To evaluate the phoneme accuracies of alignments we used the mean
percentage deviation in Levenshtein distance (Phoneme Error Rate,
or PER) with the manually corrected alignments as the gold standard
(Table 1). While not the suggested method of [3, 1] it is standard [1,
Ch. 1.32]. We used this as a measure of transcription accuracy since
it is quick and easy to determine, and the agreed phonemisation of
the two original annotators constituted our gold standard for devel-
opment. See Section 4 for a perceptual evaluation of the resulting
synthesis systems.

Table 1 shows each annotator, and the standard alignment sys-
tem, compared to the phonemisation agreed by the two initial anno-
tators. The automatic alignment is surprisingly bad in comparison,
with over 19% of all phonemes wrong for the “simple” case of clear
read speech prompts. For the spontaneous speech the PER is even
higher, being above 25%. The standard Festival transcription adds
very few phonemes. However, it deletes many phonemes and per-

forms many substitutions, particular for the spontaneous speech. Of
the additions, most are additional end of word stops, particularly “t”
but often “d”, and the main substitutions are “t”s for glottal stops
and end of word “z” for “s”. Together these account for 35% of all
mistakes in the spontaneous and the pattern is similar for the read
speech. What is notable here is that only the glottalisation could be
considered speaker specific and non-standard in RP English (though
common in many dialects). On the other hand, deletion of end of
word stops and devoicing are common, in fact the main differences
found here are similar to those in [17].

The third transcriber is almost as different from the phonemi-
sation agreed upon by the two other transcribers as to the standard
automatic method. This does not mean the third transcriber is closer
to the standard Festival phonemisation. In fact they are further away,
with a PER of 22.6% (read) and 32.0% (spontaneous) respectively
(Table 3). The bias toward the transcribers’ starting point thus ap-
pears very large. This is borne out when comparing to the lattice-
based methods (see Section 3).

2.3. Cascading Deletion Errors

Due to the much greater amount of reductions and deletions in spon-
taneous speech, some utterances experience an issue of cascading
alignment errors. This is not an issue of poor boundary alignment,
but of poor automatic phonemisation. An example in our corpora
is a realisation of the two words “basically because”. In the read
speech the automatic transcription is appropriate, but in the sponta-
neous the produced pronunciation is “basly ’cause”. This produces
not only the problem of non-existent phonemes being found, but also
the much more serious issue of phonemes being “pushed” later in the
utterance, putting every single phoneme further down the line out
of alignment. This creates phonemes examples for model training
which are grossly wrong. While the problem with because/’cause
is arguably a lexicalised difference which could be resolved at tran-
scription time, the issue of basically/basly is not, and such situations
will cause problems in the trained models. Lexicalised differences
were treated as orthographic transcription errors and corrected prior
to alignment.

3. PRONUNCIATION VARIATION IN FORCED
ALIGNMENT

We investigated a lattice-based forced alignment system to improve
the phoneme identity accuracy on both read and spontaneous speech.
Lattices have long been used to allow for pronunciation variation in
automatic speech recognition and by researchers interested in speech
segmentation, e.g., [18, 19, 20]. This is often avoided in synthe-
sis due to the consistency assumption, given that the phonemisation
found at training time cannot necessarily be produced during synthe-
sis. This assumption, as discussed above, may not be correct.

The lattice-based system relies on two sources of information:
hand-written variant options and pre-encoded pronunciation vari-
ants. The Combilex pronunciation dictionary contains pre-encoded
pronunciation variants for a large portion of the dictionary, the aver-
age number of variants per word is 1.82. In the standard “full” pro-
nunciation, normally pulled from the dictionary for both alignment
and synthesis, these variants are not utilised. The system used here
is based on the underlying context-dependent rewrite rules of Com-
bilex as described in [21]. The system first finds all variants present
in the dictionary and populates the lattice, realised as an FST, with
them before expanding it using the additional expert-written variant
options. These options are context-dependent rewrite rules written
in terms of regular expressions. They generally take the form of a
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phoneme with its left and right context and the resulting variant op-
tion, but can be any regular expression matching a valid string of
symbols in the language of the Combilex dictionary. Thus the left
and right context can be specific phonemes, features of the phoneme
such as voicing, nasality and similar, but also word, syllable and
phrase boundaries. For the set of manual rules, 14 rules were imple-
mented based on the most common differences between the gold
standard and automatic transcription from Section 2.1. Here are
three examples from broad to quite specific:

• Any z can be devoiced.

• Any end-of-word t can be a glottal stop.

• A schwa after an f and before a stop can be deleted.

Note that the rules being based on the differences in the 50 sentences
means they may be speaker dependent. We consider this acceptable
as it is of interest whether or not a relatively small manual effort can
improve the alignment procedure.

3.1. Method

Read and spontaneous corpora of respectively 1176 and 1146 sen-
tences, plus the 50 matching sentences of the gold standard, were
used as training data. Note that the 50 sentences both are in the
training data and serve as test data. This is perfectly reasonable as
we are attempting to create the best possible alignment of a known
training set given no previous phoneme information. We are never
trying to align unseen test data as the training data is the test data in
our case. Festival was used as the front-end for producing the stan-
dard phonemisation of each utterance and a modified version of the
multisyn tools for the alignment [22].

For alignment the multisyn tools rely on HTK [23]. A standard
procedure was followed. As the lattices are initially created as FSTs
these were converted to the HTK SLF format for alignment. After a
first series of embedded training, the lattices were introduced simul-
taneously with the optional short pause models. The standard pro-
cedure was followed by a non-standard pause removal step, where
short pauses under 40 ms were removed from the labels and models
re-aligned and estimated. This was found to improve performance.

Four systems were built: the standard alignment method, lattice
alignment using only Combilex pronunciation variants, lattice align-
ment using only manual rules and lattice alignment with both manual
and Combilex variants. Each system was run in a variety of config-
urations, which for brevity is not detailed here, from which the best
method was selected for use. In all cases this was with no standard
multisyn phoneme substitutions, an additional pause removal step,
five-state monophone models and flat-start alignment.

3.2. Results

Using the agreed gold standard transcription as the comparison
point, Table 2 lists the performance of each system. The proposed
full system, i.e., lattices with both rules and Combilex variants,
improves the phoneme accuracy in both the read (2.8%) and spon-
taneous (5.4%) case compared to the standard method. However,
the manual rules are better in both cases, improving the standard
system by 3.9% and 6% respectively. Using lattices particularly
reduces the number of phoneme additions, meaning they are more
likely to delete phonemes compared to the traditional method. This
is important as the cascading errors of Section 2.3 occur because
of additional phonemes. For the spontaneous speech, substitution
errors are also reduced whereas deletions increase slightly, though
much less than the reduction in additions.

Del Add Sub Total PER
Read

Standard 10 149 151 310 19.1%
Lattice w. Combilex 6 139 184 329 20.2%
Lattice w. Rules 20 106 120 246 15.2%
Lattice w. Both 22 101 142 265 16.3%

Spontaneous
Standard 17 202 180 399 25.2%
Lattice w. Combilex 9 178 199 386 24.4%
Lattice w. Rules 37 133 134 304 19.2%
Lattice w. Both 38 130 145 313 19.7%

Table 2. Overall differences between the reference agreed phonemi-
sation and the different automatic systems.

A1 A2 A3 Gold
Read

Standard 17.3% 19.2% 22.6% 19.1%
Lattice w. Combilex 20.1% 20.2% 16.9% 20.2%
Lattice w. Rules 15.7% 15.2% 13.9% 15.2%
Lattice w. Both 16.8% 16.7% 9.1% 16.3%

Spontaneous
Standard 23.0% 25.7% 32.0% 25.2%
Lattice w. Combilex 23.4% 25.1% 26.1% 24.4%
Lattice w. Rules 18.0% 19.9% 20.8% 19.2%
Lattice w. Both 18.6% 20.8% 16.5% 19.7%

Table 3. Overall PER differences between the automatic systems
and the various annotators. A[1–3] are annotators; Gold is the agreed
phonemistation between A1 and A2.

While it seems clear that the manual rules reduce the errors, it is
not clear that the Combilex pronunciation variants do. This is likely
due to the double bias toward the standard phonemisation. If using
the third transcriber as the gold standard (Table 3), both the dictio-
nary variants and the manual rules are beneficial, and in fact comple-
mentary. The manual rules still perform better on their own, but this
may be due to these being tuned toward the test set. The third tran-
scriber also favours the combined system, but massively disfavours
the standard phonemisation, showing, again, the transcriber bias to-
ward the initial transcription. Despite this, it is clear that the variant
systems outperform the standard phonemisation in terms of phoneme
accuracy.

4. SYNTHESIS EVALUATION

While we have shown improved PER, this need not translate into
better synthesis quality. Furthermore, the discrepancy between an-
notator opinion and system PER casts doubt on the exact system per-
formance. We therefore performed a synthesis-based evaluation, i.e.,
a task-oriented evaluation of the resulting alignments [24], which is
also the ultimate target. Specifically, HTS 2.3beta [25] was used to
train eight HMM voices: four of each speech type, each using either
standard alignment or one of the three lattice systems. The same cor-
pora as for the alignment were used, meaning 1176 read and 1146
spontaneous sentences recorded in a hemi-anechoic studio by a fe-
male British English voice talent for the purpose of speech synthesis.
The 50 test sentences were excluded from voice training in all cases.

4.1. Listening Test Design

A listening test based on MUSHRA [26] was run. This is similar to a
MOS test, but allows side-by-side comparison of stimuli (same sen-
tence but different systems) on a sliding scale from 1–100. Stimuli
were unlabelled and ordered randomly. Natural versions of both read
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Fig. 1. Boxplot of perceptual test results. R = Read, S = Sponta-
neous, N = Natural; M = Lattice w. Manual rules, P = Lattice w.
Combilex variants, A = Lattice w. Both, S = Standard method. Solid
lines are medians, stapled means and boxes 25 and 75% quantiles.

Table 4. Adjusted p-values after Holm-Bonferroni correction for the
Wilcoxon signed-rank test. * = p<0.001. Labels as in Figure 1.

and spontaneous speech were included with the synthetic systems.
Participants were asked to rate the stimuli according to how natural
they sounded, with at least one stimulus at 100 and the others rated
in relation to this. No designed reference sample was presented since
each set included multiple natural productions. 32 paid participants
were recruited and performed the experiment in a sound-insulated
booth wearing Beyerdynamic DT770 PRO headphones. Each rated
15 sentences from either of two non-overlapping subsets randomly
selected from the 50 test sentences, along with an initial practice sen-
tence not included in the analysis. This amounts to 16 evaluations
of each speech sample, for a total of 480 datapoints per system. All
test materials are available at [27].

4.2. Results

The results of the test are graphed in Figure 1. Table 4 shows all sys-
tem pairs compared using a Wilcoxon signed-rank test, after Holm-
Bonferroni correction to avoid false positives. Natural speech is,
unsurprisingly, rated significantly higher than synthetic speech. In
contrast to [13] there was no significant difference between the natu-
ral speech types. However, this is probably due to the natural speech
being so clearly more natural than the synthetic, causing differences
between these two types to become much smaller. All the read
speech-based voices were rated significantly higher than the voices
built on spontaneous speech. For the read speech the standard align-
ment produces significantly higher rated speech than the other types,
and the Combilex variants significantly lower, although the effect
size is quite small. For spontaneous speech, on the other hand, the
lattice system with only Combilex variants was rated significantly
higher than all others, with no differences between the rest.

5. DISCUSSION

The consistency assumption between training and synthesis only
partly holds. For read speech synthesis it seems to hold, as the
standard method achieves higher ratings. Informal listening to the
output of the proposed systems suggests that these systems produce
hyper-articulated speech, which could reduce subjective naturalness.
Arguably, however, we are getting what we ask for. At synthesis
time we ask for the hyper-articulated version of the sentence, though
we do not normally get it because of serendipitous reductions ob-
tained due to the consistency assumption. Once we break that, a
hyper-articulated version is produced. However, if we truly wish
to control synthesis output, we should rather aim to have a better,
more complete, acoustic model as provided by the proposed sys-
tem. Methods for controllable, perhaps even gradeable, reduction
of a sentence should then be developed, for instance utilising the
reduced variants already encoded in dictionaries. While synthesis
from the phonemisation found by the pronunciation variant align-
ments was not evaluated in a formal perceptual test, preliminary
subjective evaluations are promising, indicating that pronunciation
variant synthesis systems should be worth investigating. Synthesis
from spontaneous speech, in contrast, appears to benefit from the
use of pronunciation variants. It is encouraging that simply applying
pre-encoded pronunciation variants helps us learn a better model,
particularly on difficult, spontaneous speech data, where a fully
pronounced alignment is highly inappropriate. While including
manual rules always improved accuracy, as measured by the manual
transcription, they did not increase perceived naturalness in synthe-
sis. This may be due to them being overfitted to the test sentences,
and thus not entirely suitable for the full training data. Synthesis
models from read speech were rated more natural than spontaneous
speech. This is not surprising since spontaneous data is much more
varied and difficult to model, as exemplified by the much less ac-
curate alignments. However, using pronunciation variant forced
alignment pushed spontaneous speech towards closing the gap, and
likely forms part of the alignment method used in [11]. It is also
possible that the difference found between read and spontaneous is
due to difference in phoneme accuracy and not specifically the type
of speech, i.e. that read speech with a lower accuracy can benefit
from such variant modelling.

6. CONCLUSION

We have reported on an investigation of the consistency assump-
tion between training and synthesis in TTS. A pronunciation variant
based forced-alignment method was implemented and its application
to speech synthesis evaluated. It was found that standard synthesis
with read speech did not benefit from these variants, though the un-
derlying acoustic model arguably was more correct. For spontaneous
speech, including pronunciation variation yielded an improvement,
showing that the consistency assumption between training and syn-
thesis only holds when minor errors are made. We suggest further
improvements could be attained by incorporating automatic pronun-
ciation reduction at synthesis time, this is considered future work.
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