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ABSTRACT

Multi-speaker TTS trained with a general DNN has outper-
formed individually modelled baseline [1]. Multi-speaker
DNN takes advantages of larger amount of training data from
multiple speakers to find robust transformations in the hid-
den layers and covers more speaker variability in the output
regression layer. In this paper, we propose a new approach
to unsupervised speaker adaptation with multi-speaker DNN.
It takes advantage of shared hidden transformation to search
for the labels of unlabelled acoustic frames and the found
labels are used for speaker adaption. Experimental results
show that the new approach of unsupervised adaptation can
achieve comparable performance with supervised adaptation
both objectively and subjectively. We further extend it to
cross-lingual adaptation. It can remove non-native accent
and improve the naturalness while keep the same speaker’s
characteristics.

Index Terms— statistical parametric speech synthesis,
deep neural networks, speaker adaptation

1. INTRODUCTION

Employment of Deep Neural Networks (DNNs) leads the
research of parametric Text-to-Speech (TTS) synthesis to a
new stage [1, 2, 3, 4, 5, 6, 7, 8, 9]. Zen et al. [2] compre-
hensively addressed some intrinsic limitations of the conven-
tional HMM-based speech synthesis, e.g. decision-tree based
contextual state clustering and showed that, on a rather large
training corpus (∼ 35,000 sentences), DNN can improve TTS
performance over that of GMM-HMM with similar number
of parameters. Qian et al. [7] examined various aspects of
DNN-based TTS training with a moderate size corpus (∼
5,000 sentences), which is more commonly used for paramet-
ric TTS training. Fan et al. [8] introduced LSTM-based RNN
into parametric TTS synthesis, which uses deep structure for
state transition modeling and performs the acoustic modelling
from a frame to sequence.

DNN can model the corpus of multiple speakers with a
multi-speaker structure [1]. The shared hidden layers can en-
code linguistic diversities from multiple speakers, and get a

more robust transformation from linguistic features to acous-
tic features to benefit synthesized voice quality. Meanwhile,
speaker adaptation can also be achieved with limited speech
by keeping the speaker-independent or pooled-speaker hidden
layers and re-training only the output layer.

However, correct linguistic transcriptions are not always
available for adaptation. Unsupervised adaptation needs to be
performed without linguistic transcriptions. If working well,
it can be used for synthesizing arbitrary speaker’s voice with
only limited amount of speech from a target speaker, espe-
cially useful for a cross-lingual scenario.

For HMM-based speech synthesis, unsupervised adapta-
tion is mostly achieved by getting the linguistic labels from a
speech recognizer. King et al. [10] took the triphone labels
from recognizer to estimate adaptation transformation. Gib-
son et al. [11] built a cross-lingual state mapping with the
results from a speech recognizer. It should be noted in the
recognizer based approach, the accuracy of recognition re-
sults cannot be guaranteed for short units like senone. The
correctness of long units like phone or word is also generally
conditioned by how good the language model is. Limited con-
textual information, such as tied tri-phone state, i.e., senone,
is commonly used in speech recognition while TTS synthesis
generally need very rich or full contextual information to ob-
tain good synthesized voice. To obtain correct full contextual
labels from recognition results is not easy, especially for the
long-span linguistic features.

In this paper, we propose a label search method based on
a multi-speaker DNN to find the best matching label which
has the closest DNN prediction for unlabeled speech frame.
Multi-speaker DNN, trained with many different speakers to
cover speaker variability adequately, is expected to make the
search more robust. Then, multi-speaker DNN is adapted to
a new speaker with the resultant found labels in supervised
adaptation. Context information, sample weight and iterative
training are examined for further improving the performance
of unsupervised adaptation. Our approach does not need lan-
guage relevant input information, so it can be extended to any
other language or even cross-lingual adaptation.
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2. MULTI-SPEAKER MODELING AND
SUPERVISED SPEAKER ADAPTATION

In DNN-based TTS synthesis, DNN is used as a regression
model to map input linguistic features into output acoustic
features. DNN is a layer-structured model, which learns
jointly a complicated linguistic feature transformation in hid-
den layers and a speaker-specific acoustic space in output
layer. DNN can be decomposed into two stages: linguistic
transformation; and acoustic regression. DNN-based TTS
synthesis can benefit from multiple speakers’ data and solve
the adaptation problem by sharing the hidden layers among
different speakers.

Shared hidden layers

Speaker 1 Speaker 2 Speaker N

Speaker 1 Speaker 2 Speaker N

Fig. 1. Multi-speaker DNN Architecture in DNN-based TTS
Synthesis [1].

Figure 1 shows the architecture of the proposed multi-
speaker DNN. In multi-speaker DNN, hidden layers are
shared across all the speakers in the training corpus, as a
global linguistic feature transformation acrosses and serves
all training speakers. Conversely, each speaker has his own
output layer, in the ultimate regression layer, to model the
specific acoustic space for a particular speaker. Multi-speaker
DNN is jointly optimized with multiple speakers data. It can
synthesize each speaker’s voice with the knowledge of other
speakers.

The shared hidden layers, in the multi-speaker DNN,
can be treated as a global linguistic feature transformation
universal to all training speakers. The shared hidden layers
can also be used to transform the linguistic feature for a new
speaker. By fixing the shared hidden layers and only updating
the speaker-specified regression layer, supervised adaptation
can be achieved with only limited adaptation data and the
corresponding linguistic information.

3. UNSUPERVISED SPEAKER ADAPTATION

In speech recognition, unsupervised speaker adaptation can
be achieved with adaptation data and its speaker independent
recognition result. Similar technique which uses recognizer to
get labels is also used in HMM-based TTS synthesis. How-
ever, the transcription obtained by recognition usually cov-

ers only part of all context labels used in TTS synthesis. Al-
though full context labels can be predicted from recognition
result, recognition errors can cause problems. In cross-lingual
scenario, phone sets and linguistic characteristics in different
languages make the predictions even more difficult.

In our proposed unsupervised speaker adaptation, label
search is performed at the frame level. For multi-speaker
DNN-based TTS, based on the minimal square error training
criterion, given the acoustic feature o, the best-match linguis-
tic label l is

l = argmin
l

D(min
s

Fs(l),o)

where Fs(·) denotes DNN transformation for speaker s and
D(·) is the distance metric for acoustic features. Based on
this criterion, when there are rich enough speech data for a
multi-speaker DNN, the label can be more accurately found
by traversing all possible linguistic and speaker combinations.

However, it’s apparently very difficult, even impossible,
to traverse the whole linguistic set in linear time complex-
ity. Some trade-off between search precision and complexity
must be made. To achieve fast adaptation for practical ap-
plications, we reduce the search space to a smaller but still
linguistic-rich label set.

On the other hand, the number of speakers in multi-
speaker DNN is also a crucial parameter for label search.
Because the number of speakers is usually limited in corpus
for TTS, we build multi-speaker DNN with a speech recogni-
tion corpus to include many speakers to enrich its variability.

With the full context linguistic labels for each frame, the
problem is simplified and identical to the supervised adapta-
tion. Thus the output regression layer of DNN can be esti-
mated by the least squares approach.

Although the proposed unsupervised adaptation is quite
straightforward, some issues still need to be addressed.

3.1. Distance Metric

Following the training criterion of DNN, the distance metric
for label search is designated as square error. Note that all
features for DNN training are normalized into the zero-mean
and unit-variance, so the distance metric is also computed in
the same normalized scale.

3.2. Context Information

The contextual information, which can become more dis-
criminative with long-span linguistic features and speaker
variability, is widely used in speech recognition and speaker
verification. Context frames are concatenated to a new high-
dimensional vector for distance measure in label search.
Since context information takes additional computational
cost in the search process, no more than 5 contextual frames
was used in this work.
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3.3. Sample Weight

Not all the frames can find their corresponding labels exactly,
given a limited data set. As a result, certain mappings be-
tween linguistic labels and acoustic features are imprecise.
Based on the search criterion, pairs with closer distance are
more reliable and then should play more crucial roles in adap-
tation. Therefore, the weighted least square error method is
employed in estimating the output layer of adapted network
where inverse of distance between acoustic features is chosen
as the sample weight.

3.4. Iterative Training

Although sufficient number of speakers can cover most of the
speaker variability and make label search feasible, the adapted
model, which yields predictions closer to the target speaker,
can improve label search precision. The proposed unsuper-
vised adaptation can be optimized iteratively, i.e., label search
is repeated iteratively with the adapted model and output layer
estimation is performed with resultant labels.

4. EXPERIMENTS

4.1. Experimental Setup

To increase speaker variability so as to obtain better label
search result, the multi-speaker DNN is built on the “long”
part of WSJ1 corpus, used in speech recognition. Each
speaker has 1,200 sentences for training and 40 sentences for
testing. In this corpus, there are totally 25 native American
English speakers, in which 23 speakers’ voices are used for
training multi-speaker DNN, and the other two, i.e., one fe-
male and one male, speakers’ voices are used for evaluating
the speaker adaptation performance. Additionally, another
bilingual Mandarin and English speaker’s voice is used for
cross-lingual adaptation.

Speech signals are sampled at 16 kHz, windowed by a 25-
ms window, and shifted every 5-ms. An LPC of 40th order is
transformed into static LSPs and their dynamic counterparts.
The phonetic and prosodic contexts include quin-phone, the
position of a phone, syllable and word in phrase and sentence,
the length of word and phrase, stress of syllable, POS of word.

In the multi-speaker DNN, the input feature vectors con-
tain 353 dimensions, where 326 are binary features for
categorical linguistic contexts and the rest are numerical
linguistic contexts. The output feature vector contains a
voiced/unvoiced flag, log F0, LSP, gain, their dynamic coun-
terparts, totally 127 dimensions. Voiced/unvoiced flag is a
binary feature to indicate the current frame is voiced or not.
DNN is set with 3 hidden layers and 1024 nodes for each
layer. An exponential decay function is used to interpolate F0
in unvoiced regions. 80% of the silence frames are removed
from the training data to balance the training data and to re-
duce computational cost. Both input and output features of

training data are normalized to zero mean and unity variance.
DNN training is based on the computational network toolkit
(CNTK) [12].

For testing, DNN outputs are fed into a parameter gener-
ation module to generate smooth feature parameters with the
dynamic constraints. Then formant sharpening based on LSP
frequencies is used to reduce the over-smoothing problem in
modeling. Finally speech waveforms are synthesized by an
LPC synthesizer with generated speech parameters.

Objective and subjective measures are used to evaluate the
performance of TTS systems on testing data. Synthesis qual-
ity is measured objectively in terms of distortions between
natural test utterances of the original speaker and the syn-
thesized speech frame-synchronously where oracle state du-
rations (obtained by forced alignment) of natural speech are
used. The objective measures are F0 distortion in the root
mean squared error (RMSE), voiced/unvoiced (V/U) swap-
ping errors and normalized spectrum distance in log spec-
tral distance (LSD). The subjective measures were done on
speech naturalness and speaker similarity. In the naturalness
section, each subject is asked to compare natural and synthe-
sized speech and give 5-point scale scores, from 1 as “bad” to
5 as “excellent”. Speaker similarity is done similarly, from 1
as “very different” to 5 as “very close”. Mean opinion score
(MOS) indicates the summarized measurement. In each sub-
jective test, we invite 10 native English subjects to participate
and each subject evaluates 40 groups with headsets.

4.2. Evaluation Results and Analysis

4.2.1. Intra-lingual Adaptation

To evaluate unsupervised adaptation, we first tested the pro-
posed method on two speakers in WSJ1, including the con-
text information, sample weight and iterative training. Due
to identical scripts across all the speakers in WSJ1, we chose
1,100 sentences to train the multi-speaker DNN and reserved
100 sentences for adaptation.

The objective results are shown in Table 1, context in-
formation including the long-span features contributes to the
reduction of LSD. Sample weight avoids some inaccurate la-
bels and helps F0 modelling. Iterative training leads a more
precise search with adapted model and improve adaptation
effectively. Compared with supervised adaptation, unsuper-
vised adaptation still has a gap of performance to fill, but not
significant.

In subjective test, we take the voice synthesized with ex-
tracted features, denoted as “vocoder”, as the upper bound of
synthesized voice quality. Figures 2 and 3 suggest that unsu-
pervised adaptation results are comparable to supervised one
both in naturalness and similarity with a slightly worse MOS
scores.
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Table 1. Objective measures of intra-lingual adaptation on WSJ1.
Speaker Female Male

Measures LSD (dB) V/U Err Rate (%) F0 RMSE (Hz) LSD (dB) V/U Err Rate (%) F0 RMSE (Hz)
1 Frame 4.29 4.11 26.5 4.63 4.10 18.1

3 Frames (± 1 context) 4.25 4.04 26.4 4.59 4.09 18.8
5 Frames (± 2 context) 4.22 4.06 26.5 4.57 4.10 19.0

+ Sample weight 4.23 4.06 25.6 4.58 4.08 17.7
+ Second iteration 4.18 4.05 25.2 4.47 4.05 17.0

Supervised 4.01 3.88 25.6 4.25 3.19 15.2

2.5

3

3.5

4

4.5

5

Female Male

M
ea

n
 O

p
in

io
n

 S
co

re

Unsupervised Supervised Vocoder Recording

Fig. 2. Naturalness MOS results for intra-lingual adaptation.
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Fig. 3. Similarity MOS results for intra-lingual adaptation.

4.2.2. Cross-lingual Adaptation

In cross-lingual adaptation, data is from a native-Mandarin
speaker who also can also speak English. Both Mandarin and
English utterances are collected from the person. 100 Man-
darin utterances are used for adaptation based upon English
multi-speaker DNN, referred as cross-lingual adaption, while
100 English utterances for adaptation based on the same En-
glish multi-speaker DNN, called intra-lingual adaptation and
employed as a comparison to that of cross-lingual adaptation.

Table 2. Subjective measures of intra-lingual and cross-
lingual adaptation for a bi-lingual speaker.

Naturalness MOS Similarity MOS
Intra-lingual 3.27 2.50
Cross-lingual 3.06 2.65
Supervised 2.84 3.78
Recording 2.93 5.00

The results of objective measures in Table 2 show that

the performance of unsupervised adaptation in cross-lingual
scenario is comparable to the intra-lingual one with a slightly
worse naturalness and better speaker similarity. In naturalness
test, the unsupervised adaptation is better than the supervised
one, which is due to that the non-native English speakers have
some wrong pronunciation or accent affected by their own
native language. The unsupervised adaptation without limita-
tion of linguistic information can assign a closer label to the
mispronunciation and reduce the accent in some cases. We
conjecture also why the unsupervised adaptation gets worse
results in similarity scores, comparing with the supervised
adaptation. In addition, cross-lingual adaptation can keep
more accent from the speaker’s native language to achieve
better similarity than the intra-lingual one.

5. CONCLUSIONS

In this paper, we propose a new approach to unsupervised
speaker adaptation, based upon a multi-speaker DNN for TTS
synthesis. The multi-speaker DNN, trained with many speak-
ers’ voices, serves as a big database for “label search” and
robust linguistic transformation for adaptation. The experi-
mental results on both intra-lingual and cross-lingual speaker
adaptation show that the proposed approach is promising.
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