
MODELING SPECTRAL ENVELOPES USING DEEP CONDITIONAL RESTRICTED
BOLTZMANN MACHINES FOR STATISTICAL PARAMETRIC SPEECH SYNTHESIS

Xiang Yin, Zhen-Hua Ling, Ya-Jun Hu, Li-Rong Dai

National Engineering Laboratory of Speech and Language Information Processing,
University of Science and Technology of China, Hefei, P.R. China

byx1030@mail.ustc.edu.cn, zhling@ustc.edu.cn, hyj15475@mail.ustc.edu.cn, lrdai@ustc.edu.cn

ABSTRACT
This paper proposes a spectral modeling method using a deep
conditional restricted Boltzmann machine (DCRBM) for statistical
parametric speech synthesis. In this method, a DCRBM, which
combines a deep neural network (DNN) with a conditional restricted
Boltzmann machine (CRBM), is utilized to describe the condi-
tional distribution of spectral envelopes given linguistic features.
Compared with DNN and deep mixture density network (DMDN),
DCRBM is better at describing the multimodal distribution of high-
dimensional acoustic features with cross-dimension correlations. At
training stage, the DNN part and the CRBM part of the DCRBM are
pre-trained successively and then a unified fine-tuning of all model
parameters is conducted. At synthesis time, spectral envelopes
are generated from the estimated DCRBM model by iterative sam-
pling and dynamic-feature-constrained parameter generation given
linguistic features of input text. Experimental results show that
our proposed method can produce more natural speech sounds than
the hidden Markov model (HMM)-based, DNN-based, and DMDN-
based synthesis methods. This method also outperforms previous
work which adopts restricted Boltzmann machines (RBM) to model
the distributions of spectral envelopes at HMM states.

Index Terms— Speech synthesis, hidden Markov model, deep
neural network, restricted Boltzmann machine, spectral envelope

1. INTRODUCTION

Recently, hidden Markov model (HMM) based statistical parametric
speech synthesis (SPSS) has become a mainstream speech synthesis
method [1]. At training stage, the spectral, F0 and duration features
are modeled simultaneously within a unified framework of HMMs
[2]. At the stage of synthesis, acoustic features are predicted from
corresponding HMMs through the maximum likelihood parame-
ter generation (MLPG) algorithm under the conjugate constraint
between static and dynamic features [3]. Finally, the speech
waveforms are reconstructed by high quality vocoder from the
predicted features. This method can synthesize highly intelligible
and relatively smooth speech sounds [4].

However, the quality of its synthetic speech degrades and the
inadequacy of acoustic modeling is one of the main reasons [5].
Recently, some methods to improve the acoustic modeling of SPSS
using deep learning techniques have been proposed. One of them
applies restricted Boltzmann machines (RBM) to model the distri-
bution of spectral envelopes at the leaf nodes of decision trees [6,7],
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considering the advantage of RBMs in describing the distribution
of high-dimensional observations with cross-dimension correlations.
At synthesis stage of this method, the mode vectors of trained RBMs
were estimated and used to replace the Gaussian mean vectors in
the parameter generation process. Another approach is to replace
decision trees used in the conventional HMM-based speech synthesis
with deep neural networks (DNN) in order to better model the effects
of linguistic features on the distribution of acoustic features [8].
Compared with decision trees, DNN model can describe complex
context dependencies and avoid the data fragmentation problem in
building large decision trees. However, the conditional probability
density function (PDF) of acoustic features given specific linguistic
features can be multimodal since humans can speak the same text in
different ways [9]. Current DNN-based acoustic modeling method
fails to embody such multimodal property. Thus, a deep mixture
density network (DMDN) based speech synthesis method has been
proposed [9], which adopted a Gaussian mixture model (GMM)
to describe the distribution of acoustic features given linguistic
features. The parameters of the GMM were mapped from linguistic
features using a DNN structure. Although this method can predict
acoustic features more accurately than the DNN-based method and
improve the naturalness of synthesized speech, its ability to model
cross-dimension correlations of acoustic observations is still limited.

This paper proposes a new spectral modeling method to combine
the advantages of RBM-based distribution representation in [7]
and DNN-based dependency modeling in [8]. In this method, an
RBM conditioned on the output of a DNN is utilized to model the
distribution of spectral envelopes given linguistic features. This
model structure is named deep conditional restricted Boltzmann
machine (DCRBM) in this paper. DCRBM can be considered as
an extension of conditional restricted Boltzmann machine (CRBM)
[10], which employs a deep generative model to map input features
into conditional vectors. The difference between DCRBM and
DMDN is that the GMM distribution determined by the output layer
of a DMDN is replaced by an RBM, which is better at describing the
multimodal distribution of high-dimensional acoustic features with
cross-dimension correlations as discussed in [6].

The paper is organized as follows. Section 2 describes the
details of our proposed method after a brief review of CRBM. The
experimental results are shown in Section 3, then the conclusion is
given in Section 4.

2. METHODS
2.1. Conditional restricted Boltzmann machine

The conditional restricted Boltzmann machine (CRBM) was origi-
nally proposed to model the temporal dependency of human motion
features [10] and was later applied to learn the relationship between
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Fig. 1. Model structures of (a) a CRBM and (b) a two-hidden-layer
DCRBM.

source and target speech in voice conversion [11]. The model
structure of a CRBM is illustrated in Fig. 1(a). The links between
the visible units y and the hidden units h(∗) are undirected. If the
conditional vector x is given, y and h(∗) compose an RBM and its
parameters depend on weights A and B through the two directed
links. When h(∗) ∈ {0, 1}H are binary and x ∈ RDX and y ∈ RDY

are real-valued, the energy function of a CRBM is written as

E(y, h(∗),x; θC) =

DY∑
i=1

(yi − ai −
∑
k Akixk)2

2

−
H∑
j=1

(bj +
∑
k

Bkjxk)h∗j −
DY∑
i=1

H∑
j=1

wijh
∗
jyi, (1)

where θC = {W,A,B, a, b} is the set of parameters in the CRBM,
W = {wij} ∈ RDY ×H are the symmetric weights between visible
and hidden units, A = {Aki} ∈ RDX×DY and B = {Bkj} ∈
RDX×H are matrices corresponding to the directed links in Fig.
1(a), a and b are the bias vectors of visible and hidden layers. The
conditional PDF of y given x can be written as

p(y|x, θC) =
1

ZθC

∑
∀h(∗)

exp {−E(y, h(∗), x; θC)}, (2)

where ZθC =
∫ ∑

∀h(∗) exp{−E(y, h(∗), x; θC)}dy is the partition
function.

The conditional probability of output feature yi given the hidden
layer is

p(yi|h(∗), x) = N (ai +

DX∑
k=1

Akixk +
H∑
j=1

wijh
∗
j , 1), (3)

where N (·) denotes a Gaussian distribution. Similarly, the condi-
tional probability of hidden unit given y is

p(h
(∗)
j |y, x) = g(bj +

DX∑
k=1

Bkjxk +

DY∑
i=1

wijyi, 1), (4)

where g(·) is a sigmoid function.
A CRBM is usually trained under maximum likelihood criterion

using gradient descent method. The gradients of model parameters
can be derived from the negative log-likelihood function L(θC) =
− log p(y|x, θC) using contrastive divergence (CD) algorithm [10].

2.2. Deep conditional restricted Boltzmann machine

The structure of a DCRBM is presented in Fig. 1(b). In this figure,
the dot-lined box contains the structure of a traditional CRBM with

parameter set θC = {W,A,B, a, b}. The DNN part of this DCRBM
has 2 hidden layers. We name this model as a 2-hidden-layer
DCRBM for concise expression. For a L-hidden-layer DCRBM,
the activities of the top hidden layer h(L) can be calculated as
h(L) = Φ(x, θD), where the mapping function Φ(·) is composed
of L sigmoid functions, θD = {W1, c1, ...,WL, cL} are the model
parameters of the DNN part, Wl and cl are the weight matrix and the
bias vector at the l-th hidden layer. The complete model parameter
set of a DCRBM θ = {θC , θD} contains the CRBM part θC and
the DNN part θD . Given an input feature vector x, the DCRBM
first maps it into a hidden representation h(L). Then h(L) acts as the
conditional vector of a CRBM to determine the distribution of output
feature y.

Similar to CRBM, the criterion of training a DCRBM is to min-
imize the negative log-likelihood function L(θ) = − log p(y|x, θ)
on training set, which can be written as

L(θ) = − log
∑
∀h(∗)

exp {−E(y, h(∗), h(L); θC)}+ log(ZθC ),

(5)

where the energy function E(y, h(∗), h(L); θC) and partition func-
tion ZθC are the same as the ones introduced in Section 2.1. After
initialization, the parameter set θ is iteratively updated by gradient
descent. This process is named fine-tuning in this paper. The
gradients ∂L(θ)/∂θC are calculated in the same way as CRBM
training using CD approximation. The gradients ∂Lθ/∂θD are
converted into ∂L(θ)/∂h(L) · ∂h(L)/∂θD , where ∂L(θ)/∂h(L) are
given by CD approximation and ∂h(L)/∂θD are derived from the
mapping function Φ(·) similar to DNN training.

In addition to initializing θ randomly, two pre-training methods
for DCRBM estimation are implemented and compared in this paper.
(1) DBN pre-training

In this method, a deep belief network (DBN) [12] with L-hidden
layers is built using input feature vectors x in the training set. A DBN
is a probabilistic generative model, whose parameters can be learnt
in a layer-by-layer manner using a stack of RBMs [12]. The first
RBM is built using all feature vectors x in the training set. Once the
RBM of the l-th layer has been trained, the RBM of the (l + 1)-th
layer can be estimated using the samples drawn from P (h(l+1)|h(l)).
The mean-field approximation [13] is adopted here for sampling.
Then, the parameters of the estimated DBN are utilized to initialize
θD of the DCRBM. After that, a CRBM is estimated using the
{h(L), y} pairs in training set to initialize θC of the DCRBM.
(2) DNN pre-training

In this method, a regression DNN with L-hidden layers is first
constructed to map input feature x toward output feature y. The
weights of the regression DNN are initialized randomly, and then
optimized under minimum mean square error (MMSE) criterion
using training data and back-propagation algorithm [14]. The model
parameters corresponding to the L hidden layers of the regression
DNN are utilized to initialize θD of the DCRBM. Then θC of the
DCRBM can be pre-trained in the same way as DBN pre-training.

2.3. DCRBM-based speech synthesis

When applying the DCRBM model introduced in Section 2.2 to
the spectral modeling of SPSS, the input feature x and output
feature y correspond to the linguistic features and spectral features
at each frame respectively. Here each vector y is composed of
a K-dimension spectral envelope extracted by STRAIGHT [15]
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together with its delta and acceleration components. At training
time, a conventional HMM-based speech synthesis system using
mel-cepstra as spectral features is built at first. Then, the acoustic
feature sequence of each utterance in the training set is aligned
towards context-dependent HMM states to get the {x, y} pairs for
DCRBM training. Finally, a L-hidden-layer DCRBM model is
trained following the method introduced in Section 2.2. Different
pre-training and fine-tuning strategies will be compared in our
experiments.

At synthesis stage, the text to be synthesized is firstly converted
into a sequence of linguistic features x. Given the trained DCRBM
θ = {θC , θD}, the conditional distribution p(y|x, θ) for each
frame equals to an RBM with weight matrix W, visible bias vector
a + Ah(L), and hidden bias vector b + Bh(L) according to the
definition of DCRBM in Section 2.2, where h(L) = Φ(x, θD). Then,
a Gibbs sampling is conducted on this RBM to generate the spectral
feature vector at current frame. In our implementation, the sampling
of h(∗) is achieved by comparing the conditional probability in
(4) with a fixed threshold of 0.5. By setting the spectral features
predicted from DCRBMs as mean vectors and the global variances
calculated from training data as covariance matrices, the dynamic-
feature-constrained parameter generation algorithm [3] is applied
to generate the static spectral envelope sequences of an utterance.
These spectral envelopes together with the F0 features predicted by
conventional HMM modeling are sent into STRAIGHT vocoder to
synthesize speech waveforms.

3. EXPERIMENTS

3.1. Experimental conditions

In our experiments, we used a Chinese speech corpus read by a
professional female speaker of Chinese. The corpus consisted of
1, 000 sentences together with the segmental and prosodic labels.
800 sentences were selected randomly for training, 100 sentences
were selected randomly for validation and the remaining 100 sen-
tences were used as a test set. The waveforms were recorded in 16
kHz/16 bit format.

3.2. System construction

At first, a conventional HMM-based system using mel-cepstra as
spectral features was built. 41-order mel-cepstra (including 0-
th coefficient for frame power) were derived from the spectral
envelopes given by STRAIGHT analysis at 5 ms frame shift. The F0
and spectral features consisted of static, velocity, and acceleration
components. A 5-state, left-to-right-with-no-skip structure was used
to train HMMs for context-dependent phones. Each HMM state was
modeled by a single Gaussian distribution with diagonal covariance.

When modeling spectral envelopes, the dimension of static
spectral envelopes was K = 513 due to the FFT length of 1024
used by STRAIGHT analysis. The spectral amplitudes at each
frequency point were logarithmized and normalized to zero mean
and unit variance. Then, two HMM-based systems using spectral
envelopes as spectral features were built. The first system adopted
a single Gaussian distribution with diagonal covariance to model
the distribution of spectral envelopes at each HMM state, which
was named HMM-Baseline in our experiment1. The second system
adopted an RBM with 50 hidden units to model the distribution of

1The HMM-based systems using mel-cepstra and using spectral
envelopes had very similar synthetic results in informal listening tests. Here,
the system using spectral envelopes was adopted as the baseline system to
make the type of spectral features consistent among different systems.

Table 1. Preference scores (%) among the different systems , where
N/P denotes “no preference” and p means p-value of t-test between
two systems. The definition of systems can be found in Section 3.2.

DBN- DBN- RND N/P p
CRBM CRBM-FT -FT
21.25 33.75 – 45.00 0.13

– 71.88 15.62 12.50 0.00
68.13 – 15.00 16.87 0.00

spectral envelopes at each HMM state, which was denoted as RBM-
HMM in our experiment. These two systems were built following
[7]. All the HMM-based systems shared the same decision trees for
model clustering and the same state alignment results.

Then, a DNN-based system and a DMDN-based system were
built and named DNN-Baseline and DMDN respectively. The input
feature vector was of 568 dimensions, 562 of which were binary
features for linguistic contexts and the remainders were numerical
features which included relative position of frames in state and
phone, and durations of state and phone. The numerical part of
input features were normalized to be within [0, 1] based on their
minimum and maximum values in the training data. Different
from the conventional DNN-based modeling methods using spectral
parameters, such as mel-cepstra or line spectral pairs (LSP), we
took spectral envelopes with dynamic components as output feature
vectors in both DNN-Baseline and DMDN systems2. A network
structure of 2 hidden layers with 2, 048 nodes per layer was adopted
by both systems. Sigmoid activation function and linear activation
function were used in the hidden layers and the output layer of
both systems respectively. In DMDN system, the mixture number
was set to 2. Approximately 80% of the silence frames were
removed from the training data so as to balance the training data
and to reduce the computational cost. After random initialization,
the model parameters of both systems were estimated by back-
propagation with a mini-batch-based stochastic gradient descent
(SGD) algorithm.3

When building the system using our proposed method, the
structure of the DNN part in DCRBM was also chosen to have 2
hidden layers and 2, 048 nodes per layer. The number of hidden
nodes in the CRBM part was set to 1, 024 heuristically. The input
and output features were the same as the ones used in DNN-Baseline
system. The sigmoid activation function was also used in hidden
layers. At synthesis time, 15-step Gibbs sampling was conducted
on the RBM of each frame to predict spectral feature vectors as
introduced in Section 2.3. The spectral envelopes generated by
DNN-Baseline were adopted to initialize the Gibbs sampling.

In order to determine the optimal strategy of DCRBM training,
the two pre-training methods introduced in Section 2.2 were first
compared by a listening test. Two systems named DBN-CRBM
and DNN-CRBM were built using our proposed method. In these
systems, the DCRBM models were estimated by DBN pre-training

2A preference listening test between the DNN-based systems using mel-
cepstra and spectral envelopes was conducted. Twenty sentences in the
validation set were synthesized and eight Chinese-native listeners took part
in the test. The average preference percentages of these two systems were
17% and 19% which indicates the difference between them are insignificant.

3We have investigated different structures for DNN, different activation
functions in hidden layers, different learning rates, whether using DBN
weights for pre-training, and different mixture number for DMDN. The
configurations of DNN-Baseline and DMDN systems introduced here were
tuned to have the best objective performance on validation set.
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Table 2. Preference scores (%) among speech synthesized using the
HMM-Baseline, DNN-Baseline, RBM-HMM, DMDN and DCRBM
systems, where N/P denotes “no preference”. Results of t-test show
that p < 0.05 for all evaluated system pairs in this table.

HMM- RBM- DNN- DMDN DCRBM N/P
Baseline HMM Baseline
15.00 – – – 74.38 10.62

– 30.62 – – 58.75 10.63
– – 18.75 – 69.38 11.87
– – – 21.88 63.75 9.38

and DNN pre-training respectively without fine-tuning4. During
DBN pre-training and DNN pre-training, the CRBM parts of both
systems were trained for 200 epochs. The naturalness of these two
systems were compared by a preference test. Twenty sentences
from the validation set were synthesized using both systems. Each
pair of synthetic sentences were evaluated by eight Chinese-native
listeners. The results showed that the preference percentage of DBN-
CRBM (71%) was much higher than that of DNN-CRBM (11%).
Furthermore, we conducted 50-epoch fine-tuning after DBN pre-
training and 250-epoch fine-tuning after random initialization, which
produced two new systems named DBN-CRBM-FT and RND-FT. A
group of preference tests were conducted among DBN-CRBM, DBN-
CRBM-FT, and RND-FT systems. The results are shown in Table 1.
Examining the preference scores between DBN-CRBM and DBN-
CRBM-FT systems, we can see the positive effects of fine-tuning
although the difference between these two systems is not significant.
Besides, both DBN-CRBM and DBN-CRBM-FT systems had better
preference scores than RND-FT. This demonstrated the importance
of pre-training when building a DCRBM. Finally, the DBN-CRBM-
FT system was adopted to represent our proposed method and was
compared with other spectral modeling methods in next subsection.

3.3. Evaluation results and analysis

Four preference tests on naturalness were conducted to compare
DCRBM system (i.e., the DBN-CRBM-FT system in previous sub-
section) with HMM-Baseline, DNN-Baseline, RBM-HMM, and D-
MDN systems5. Twenty sentences from the test set were synthesized
by the five systems respectively using the same duration and F0
prediction results given by HMM-Baseline. Eight Chinese-native
listeners joined the test and the results are shown in Table 2.

From this table, we can see that the DCRBM system achieved
significantly better naturalness than all other four systems. Com-
paring DCRBM with DNN-Baseline and DMDN, we can see the
advantages of RBMs over single Gaussians and GMMs in modeling
the distribution of high-dimensional spectral envelopes. DCRBM
also outperforms RBM-HMM, where an RBM was estimated for
each HMM state as a density model and the context dependencies
were expressed by decision-tree based clustering. Our proposed
method only employed a global DCRBM to model the conditional
PDF of acoustic features given linguistic features. This result
indicates the advantage of utilizing DCRBM as a global conditional
generative model. The spectral envelopes generated by the five
systems for one certain frame are illustrated in Fig. 2. We can see
that the spectral envelopes generated by DCRBM and RBM-HMM
have much sharper formant structures and less over-smoothing effect

4During pre-training and fine-tuning, the learning rates were set as 10−4.
5Some examples of the synthetic speech using the five systems can be

found at http://home.ustc.edu.cn/˜byx1030/demo-2.html.
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Fig. 2. Spectral envelopes generated by the five systems compared
in Section 3.3 for one certain frame.

Table 3. Average spectral distortions (SD) on test set between
the spectral envelopes generated by the five systems and the ones
extracted from natural recordings.

system ave. SD (dB)
HMM-Baseline 3.43

RBM-HMM 3.68
DNN-Baseline 3.41

DMDN 3.36
DCRBM 3.74

than the envelopes generated by the other three systems. This is
consistent with the results of listening tests in Table 2.

In addition to the subjective evaluation, the spectral distortions
between the spectral envelopes generated by the five systems and
the ones extracted from natural recordings of test set were calculated
following the method introduced in [16]. The results are shown
in Table 3. We can see that the objective evaluation results are
inconsistent with the subjective preference scores shown in Table
2. One possible reason is that the spectral distortion is calculated
by treating each dimension of the logarithmized spectral envelopes
independently and equally. However, the aim of our proposed
method is to better model the multimodal property and cross-
dimension correlations of the conditional distribution of acoustic
features given linguistic features, which can not be expressed by
this spectral distortion criterion explicitly. Similar inconsistency
between subjective and objective evaluation results for speech syn-
thesis has also been discussed in [7, 17].

4. CONCLUSIONS

This paper proposes to model the distribution of spectral envelopes
given linguistic features using a DCRBM model for statistical
parametric speech synthesis. A DCRBM is composed of a DNN
part and a CRBM part. Its model parameters can be learnt by DBN-
based or DNN-based pre-training and further fine-tuning under
maximum likelihood criterion. Experimental results show that our
proposed method can produce more naturally speech sounds than
HMM-based, DNN-based, DMDN-based, and RBM-HMM-based
synthesis methods. Future work will focus on extending the DNN
and CRBM parts in DCRBMs to other forms of statistical models,
such as recurrent neural networks (RNN) and neural autoregressive
distribution estimators (NADE). Besides, unified modeling of spec-
tra and F0s by DCRBM will also be a task of our future work.
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