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ABSTRACT
Achieving high quality and naturalness in statistical paramet-

ric synthesis of female voices remains to be difficult despite recent
advances in the study area. Vocoding is one such key element in
all statistical speech synthesizers that is known to affect the syn-
thesis quality and naturalness. The present study focuses on a spe-
cial type of vocoding, glottal vocoders, which aim to parameterize
speech based on modelling the real excitation of (voiced) speech,
the glottal flow. More specifically, we compare three different glot-
tal vocoders by aiming at improved synthesis naturalness of female
voices. Two of the vocoders are previously known, both utilizing
an old glottal inverse filtering (GIF) method in estimating the glottal
flow. The third on, denoted as Quasi Closed Phase – Deep Neural
Net (QCP-DNN), takes advantage of a recently proposed new GIF
method that shows improved accuracy in estimating the glottal flow
from high-pitched speech. Subjective listening tests conducted on an
US English female voice show that the proposed QCP-DNN method
gives significant improvement in synthetic naturalness compared to
the two previously developed glottal vocoders.

Index Terms— Statistical parametric speech synthesis, Glottal
vocoder, Deep neural network, Glottal inverse filtering, QCP

1. INTRODUCTION

Statistical parametric speech synthesis, or HMM-based synthesis [1,
2], has become a popular speech synthesis technique in recent years.
The benefits of the framework include flexible voice adaptation, ro-
bustness and small memory footprint. In general, however, statistical
speech synthesis methods are not capable of yielding as good speech
quality as the best unit selection techniques. This stems mainly from
three causes [2, 3]: First, the parametric representation of speech, the
process called vocoding, is unable to represent the speech waveform
adequately hence resulting in robotic quality and buzziness. Second,
HMMs generate over-smoothed parameters due to statistical aver-
aging which results in a muffled voice character. Finally, there are
inaccuracies in the statistical acoustic modelling, where the dynamic
model produces smooth parameter trajectories, causing additional
muffling, particularly at phone transitions. Despite recent advances
in the acoustic modelling with deep neural networks (DNNs) [4, 5],
the statistical speech synthesis paradigm still relies on the underlying
speech parametrization. Therefore, improved speech parametriza-
tion by using more advanced vocoding techniques constitutes a jus-
tified topic when aiming at better quality and naturalness of synthetic
speech.

The source-filter model is a widely used parametric representa-
tion of speech. In traditional source-tract models, the spectral en-
velope of speech is captured by a linear prediction (LP) synthesis
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filter and the signal is synthesized using a spectrally flat excitation
(impulse train or noise). Using this kind of overly simplified exci-
tation waveforms in vocoding, however, is likely the cause of the
distinctive buzziness in statistical parametric speech synthesis. The
most widely used vocoder, STRAIGHT [6, 7], attempts to tackle
this problem by adding noise-like aperiodicity into the impulse train
excitation hence breaking its zero-phase characteristic. The excita-
tion phase information has been shown to affect the synthetic speech
quality [8, 9] and therefore further attention should be directed to the
excitation signal at waveform level.

As an alternative to overly simplified excitation waveforms, a
vocoding approach based on modelling the real excitation of human
speech production, the glottal flow, was introduced in [10]. This
vocoder, named GlottHMM, takes advantage of glottal inverse fil-
tering (GIF) in order separate the speech signal into a glottal flow
and vocal tract in the training phase of the statistical synthesis. In
the synthesis part, the vocoder reconstructs the speech waveform by
using a glottal flow pulse, called the library pulse, that has been es-
timated in advance from natural speech, and a set of acoustical pa-
rameters obtained from HMMs. Subjective listening tests on a male
Finnish voice in [11] indicated that the speech quality obtained with
GlottHMM was superior to that produced by STRAIGHT. In addi-
tion, the glottal based vocoding approach was shown to be the most
successful technique in Blizzard Challenge 2010 [12] in experiments
where intelligibility of synthetic speech was assessed in noisy condi-
tions: the GlottHMM enabled adapting the speaking style according
to the natural Lombard effect hence achieving the best score in intel-
ligibility tests. Recently, a new version of GlottHMM was proposed
based on combining a HMM-based synthesis system with a glottal
vocoder which uses DNNs instead of pre-computed library pulses
in generation of the excitation waveform [13]. Subjective listening
experiments reported in [13, 14] indicate that the DNN-based gen-
eration of the vocoder excitation resulted in a small, yet significant
quality improvement.

Despite recent advances both in statistical mapping (i.e. replac-
ing HMM-based platforms with DNN-based ones) and in vocoding,
naturalness of statistical synthesis still lags behind that of real
speech. In particular, several studies (e.g. [15, 16]) have reported
lower evaluation scores for synthetic female voices than for male
voices. Therefore, there is a great need for better synthesis tech-
niques capable of improving naturalness of high-pitched female
voices. Vocoding, either as a part of a HMM-based or DNN-based
synthesis platform, is undoubtedly one such key component that
calls for new research when aiming at high quality synthesis of
female speech. Given the fact that the glottal vocoding approach has
succeeded in improving synthesis quality of male speech in a few
recent years, as reported above, the present study was launched to
examine whether this improvement can be achieved also for female
voices. The study is motivated not only by the general need for
better statistical synthesis techniques capable of generating high
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quality female voices, but also by our recent advances in GIF tech-
niques that show improved estimation accuracy in the computation
of glottal flow from high-pitched speech [17]. The study compares
three glottal based vocoders: the baseline GlottHMM introduced in
[10], the DNN-based estimation of the excitation developed in [13]
and the new one proposed in this study. The evaluation shows that
the proposed method gives significant quality improvement for the
synthetic speech of the tested female voice.

2. COMPUTATION OF THE VOCODER EXCITATION

The three vocoders to be evaluated are all based on the utilization
of GIF in speech parametrization. The vocoders are different partic-
ularly with respect to how the excitation waveform in the synthesis
stage is formed. In the following two sub-sections, the excitation
modelling in these three vocoders is discussed by first shortly de-
scribing in section 2.1 the baseline and the current DNN-based tech-
nique, after which the proposed new DNN-based excitation mod-
elling approach is described in detail in section 2.2.

2.1. Reference methods

The baseline of our comparison is the GlottHMM vocoder [11]. The
method uses Iterative Adaptive Inverse Filtering (IAIF) [18] as the
GIF method to separate the voice source and the vocal tract. Ex-
citation waveform is computed in the synthesis stage from a single
glottal flow library pulse that is estimated in advance from natural
speech. The excitation pulse is modified to the desired pitch, source
spectral tilt and harmonic-to-noise ratio (HNR), after which the con-
catenated excitation is filtered with the vocal tract filter to synthesize
speech. In the rest of this paper, this method is referred to as IAIF
baseline.

The current version of our statistical synthesizer uses a DNN-
based voice source generation method introduced recently in [13].
The method is based on replacing the pre-computed library pulse
used in IAIF baseline with a DNN based estimation of the excitation
waveform. The DNN is trained to estimate the glottal flow computed
by IAIF from a given acoustical feature vector. In the synthesis stage,
the DNN generates a pitch and energy normalized excitation wave-
form for the vocoder. In the present study, this method is referred to
as IAIF-DNN. The new method proposed in this study involves sev-
eral computational blocks that were present already in [13]. These
differences are clarified in describing the new method in section 2.2.

Our previous studies [13, 14] indicate that IAIF-DNN yields
a small improvement in quality and naturalness compared to IAIF
baseline. In addition, IAIF-DNN benefits from a more flexible con-
trol of the speaking style [14]. Quality improvements achieved with
IAIF-DNN in [13, 14] were, however, smaller than expected. Most
evident reasons why the use of DNNs in our previous experiments
did not show a larger subjective quality enhancement are as follows:
First, while a feature-to-waveform mapping by DNN succeeds in
modelling the overall glottal flow waveform structure, it unfortu-
nately also generates averaging which is manifested in the loss of
finer high-frequency components of the vocoder excitation. Sec-
ond, IAIF-DNN takes advantage of interpolation in normalizing the
pitch of the glottal flow excitation. This type of pitch normalization
causes additional high-frequency loss, as interpolators effectively act
as low-pass filters [12]. This phenomenon is particularly detrimental
for higher-pitched voices where the effect of pitch modification is
stronger. Finally, and perhaps most importantly, the IAIF method, as
many older GIF methods, is known to have poor accuracy in estimat-
ing glottal flows from voices of high pitch [19, 20]. For high-pitched
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Fig. 1. Block diagram of the IAIF-DNN and QCP-DNN synthesis
systems. Blocks corresponding to IAIF-DNN are drawn in grey.

speech, performance of the all-pole models used in older GIF meth-
ods deteriorates in estimating the vocal tract due to the contribution
of sparse harmonics in the speech spectrum [21, 22]. Consequently,
the estimated time-domain glottal excitation is degraded by incor-
rectly cancelled resonances of the tract. This poor separation of the
speech waveform into the glottal flow and vocal tract in turn leads to
degraded statistical modelling of the corresponding parameter distri-
butions by HMMs which, finally, hinders achieving larger improve-
ments in synthesis quality and naturalness.

2.2. Proposed method

The main modification in vocoding method proposed in the present
study is that it uses a new GIF method, Quasi Closed Phase (QCP),
which has been shown to perform well with high-pitched speech
[17]. The block diagram of the proposed statistical synthesis system
utilizing QCP is presented in Fig. 1. This new DNN-based method
to compute the vocoder excitation is referred to as QCP-DNN.

In both IAIF-DNN and QCP-DNN, the DNN is trained with the
GlottHMM feature vectors as the input and the vocoder excitation
(i.e the time-domain glottal flow) as the output. Additionally, the
output target waveforms in both IAIF-DNN and QCP-DNN consist
of two consecutive glottal flow derivative pulses where glottal clo-
sure instants (GCIs) are located at both ends and in the middle of the
two-cycle segment. There are three main differences between IAIF-
DNN and QCP-DNN: first, as mentioned above, the former takes ad-
vantage of IAIF in the estimation of the glottal flow while the latter is
based on QCP. Second, the target waveforms are treated differently:
In IAIF-DNN, the output vectors are interpolated to cover a constant
span of 400 samples regardless of the underlying fundamental fre-
quency (f0), and the energy is normalized. Hann windowing is used
on the output waveforms to enable the use of overlap-add (OLA) for
synthesizing the excitation from the generated pulses. In QCP-DNN,
however, the interpolation is not used but the DNN is trained in such
a way that it enables directly generating the excitation waveform of
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Fig. 2. To create a QCP-DNN output vector (bottom), a two-pitch-
period segment (middle) is extracted from the glottal flow deriva-
tive waveform (top), cosine windowed and zero-padded to desired
length. Respective zero-levels of the time domain waveforms are
represented by horizontal lines.

a given pitch. This was achieved by changing the IAIF-DNN train-
ing so that the target waveforms are not interpolated, but are rather
symmetrically zero padded to match the desired output length. The
process is illustrated in Fig. 2. Moreover, the Hann, or squared co-
sine, windowing required for the OLA synthesis is broken into two
cosine windowing parts: first before training and second time after
generating the waveform from the DNN. This procedure eliminates
any discontinuities caused by truncating the generated waveform to
pitch period length. Finally, QCP-DNN uses the SEDREAMS GCI
detection algorithm [23], which has been shown to perform well with
speakers with various f0 ranges [24], instead of the previously used
IAIF residual based method. The need for accurate GCI detection is
two-fold: the QCP inverse filtering algorithm requires reliable GCI
estimates to achieve best results, and the GCIs are used in extracting
the pulse waveforms for training.

3. TRAINING THE SYNTHESIS SYSTEMS

3.1. Speech material

In the experiment, we used the SLT-speaker from the CMU ARCTIC
database [25] sampled at 16 kHz. The speaker is an U.S. English
professional speaker commonly used in, for example, HTS speech
synthesis demonstrations. The entire speech dataset consists of 1132
utterances, 60 of which were reserved for testing and the rest were
used for training the speech synthesis system. The dataset is pro-
vided with context dependent phonetic labels with time alignment,
which we used in training the HMM synthesis system.

3.2. Training of the DNNs

The DNN used in [13] was a standard feed-forward multilayer per-
ceptron with sigmoid activation functions, random initialization and
MSE-backpropagation training. In this study, we use the same net-
work structure for both IAIF-DNN and QCP-DNN in order to focus
on differences between the inverse filtering techniques. However, we
modified the QCP-DNN error criterion to emphasize the main exci-
tation peak of the glottal flow derivative waveform to better retain
the high-frequency information carried by the peak.

In the experiments, two different DNN systems were trained:
IAIF-DNN and QCP-DNN. Both systems are speaker dependent and
the training data for the methods was derived from the same subset
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Fig. 3. QCP-DNN generated pulses with varying the f0 at DNN in-
put while keeping other parameters constant. The resulting overlap-
added two-pitch-cycle waveform shows the effect more clearly.

of the SLT-speaker speech. An identical network topology was se-
lected for both methods: A fully connected feed-forward multilayer
perceptron with three hidden layers, sigmoid activation functions,
and random initial weights drawn from the Gaussian distribution.
The layer sizes were 47 for input, 100, 200, and 300 for the hidden
layers, and the output layer size differed between the methods. For
IAIF-DNN, the two pulses were stretched to 400 samples, whereas
only 300 samples were chosen for QCP-DNN (300 samples for a
two-cycle segment corresponds to a f0 of 106 Hz which was below
the f0 range of the female voice). As done previously in [13], initial-
ization was performed without any pre-training, and the input vec-
tors were scaled to lie between 0.1 and 0.9. Additionally for QCP-
DNN, a Hann window was used for error weighting to emphasize the
mid-signal excitation peak carrying important high-frequency com-
ponents. Both networks were trained using the GPU-based Theano
software [26, 27], which reduced the training time significantly com-
pared to the previously used MATLAB-implementation.

An example of QCP-DNN generated glottal flow derivative
waveforms is presented in Fig. 3. On top, 3(a) shows the DNN
output when the input f0 is varied while keeping the other input
parameters constant. The variation can be seen to affect not only the
generated pulse length, but also the sharpness of the main excitation
peak in the middle. The corresponding two-pitch-cycle overlap-
added waveforms are presented on bottom in 3(b) to better illustrate
the effect of varying pitch in the synthetic excitation waveform.

3.3. Training of the HMM synthesis systems

The three synthesis systems were trained using the HTS 2.3–
Beta1 HMM-synthesis toolkit [28], with the modification of the
STRAIGHT based demo to accommodate our feature vectors. All

1http://hts.sp.nitech.ac.jp/?Download (accessed Sept. 2015)
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Table 1. Scale used in the subjective evaluation.
3 much more natural
2 somewhat more natural
1 slightly more natural
0 equally natural

-1 slightly less natural
-2 somewhat less natural
-3 much less natural

systems use the same speech waveform data and the context depen-
dent phonetic labels provided in the ARCTIC database for training.
From the perspective of the HMMs, there is no difference between
IAIF baseline and IAIF-DNN because they share their acoustic
parametrization and only differ in their vocoder excitation methods.

4. SUBJECTIVE LISTENING TESTS

Subjective evaluation of the three speech synthesis systems was car-
ried out by a pair comparison test based on the Category Compari-
son Rating (CCR) [29] test, where the listeners were presented with
synthetic sample pairs produced from the same linguistic informa-
tion with the different systems under comparison. The listeners were
asked to evaluate the naturalness of first sample compared to the sec-
ond sample using the seven point Comparison Mean Opinion Score
(CMOS) scale presented in Table 1. The listeners were able to listen
each pair as many times as they wished and the order of the test cases
was randomized separately for each listener.

The listening was conducted with the TestVox2 online applica-
tion in a controlled listening environment by native English speak-
ing listeners with no reported hearing disorders. In order to make
the listening task more convenient, the listening experiment was par-
titioned in two tasks, with the first task containing eight different
sentences and the second task containing seven. Null-pairs were in-
cluded in the test and each test case was presented twice to ensure
listener consistency and enable the possible post-screening of test
participants. 14 listeners participated in the first part and 13 in the
second, with some overlap in the participants. For analysis, the re-
sults were pooled together and null-pairs were omitted. No listeners
were excluded in the analysis of results.

The result of the subjective evaluation is presented in Fig. 4.
The figure shows the mean score for each pair comparison in the
CCR test on the horizontal axis with the 95% confidence intervals.
In other words, Fig. 4 depicts the order of preference of the three
synthesis methods by averaging for each method all the CCR scores
the corresponding synthesizer was involved. For each comparison,
the mean difference was found to differ from zero with (p < 0.001),
indicating statistically significant listener preferences between the
three synthesis methods. Corroborating our previous findings re-
ported in [14], the results show small, yet significant difference be-
tween IAIF baseline IAIF-DNN in favor of the latter. Most strik-
ingly, the proposed QCP-DNN method achieves a clearly higher
score compared to both IAIF baseline and IAIF-DNN.

2https://bitbucket.org/happyalu/testvox/wiki/Home (accessed Sept. 2015)
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Fig. 4. Result of the subjective listening test on synthesized female
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5. CONCLUSIONS

Glottal vocoding aims to parameterize the speech signal by using
a physiologically motivated approach by modelling the real exci-
tation of the human voice production mechanism, the glottal flow.
Given the recent success of this approach in, for example, synthesis
of male voices [11] and in adaptation of the speaking style [15], the
present study was launched to specifically focus on synthesis of fe-
male speech. Three glottal vocoders were compared: (1) the baseline
glottal vocoder, GlottHMM introduced in [11], and (2) its recently
developed new version based on DNNs [13], and (3) a new ver-
sion that combines DNNs and a new glottal inverse filtering method,
Quasi Closed Phase (QCP). In addition to the utilization of a new
glottal inverse filtering method, the new vocoder, QCP-DNN, also
introduces other modifications to its predecessors: the DNN excita-
tion generation was modified so that glottal waveform is not interpo-
lated in the training, leading to richer high frequency content in the
generated excitation.

The three methods were trained to synthesise an US English
female voice. Subjective evaluations were conducted with native
English listeners using a CCR-type of evaluation. This evaluation
showed that the proposed QCP-DNN method clearly outperforms
the other two glottal vocoding methods, IAIF baseline and IAIF-
DNN. This is likely due to, first, the more consistent vocal tract spec-
tral representation given by QCP and second, a better quality of the
inverse filtered glottal excitation used in the DNN training. The re-
sults are highly encouraging in showing that the subjective quality of
synthesized female speech can be improved by utilizing new, more
accurate physiologically motivated glottal vocoding techniques.

Future work includes incorporating the new vocoder to a DNN-
based speech synthesis system, creating a more generalized speaker
independent QCP-DNN based excitation method, and thorough sub-
jective evaluation with a more extensive range of different speakers.
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