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ABSTRACT

While i-vector-PLDA frameworks employing huge amounts
of development data have achieved significant success in
speaker recognition, it is infeasible to collect a sufficiently
large amount of data for every real application. This paper
proposes a method to perform supervised domain adaptation
of PLDA in i-vector-based speaker recognition systems with
available resource-rich mismatched data and small amounts
of matched data, under two assumptions: (1) between-speaker
and within-speaker covariances depend on domains; (2) fea-
tures in one domain can be transformed into another domain
by means of an affine transformation. Maximum likelihood
linear transformation (MLLT) is used to infer the relationship
between the datasets of two domains in training PLDA. The
proposed method improves performance over that achieved
without adaptation. Using a score fusion technique, it outper-
forms a conventional method based on linear combination.

Index Terms— PLDA, MLLT, affine transformation

1. INTRODUCTION

Probabilistic Linear Discriminant Analysis (PLDA) [1, 2, 3]
is a state-of-the-art method used in speaker recognition to sep-
arate speaker factors in i-vectors [4] from such irrelevant fac-
tors as transmission channels and emotion. In order to train
parameters in PLDA models, multi-session recordings from
several thousand speakers are typically used. For example,
research groups involved in NIST speaker recognition evalu-
ation (SRE) [5] typically use utterances from SRE data along
with Switchboard and Fisher data. However, it would be pro-
hibitively expensive to try to collect such a large amount of
in-domain (IND) data for a new domain of interest for every
application. Most available resource-rich data that already ex-
ist do not match the domain of interest, that is, most is out-
of-domain (OOD) data. Domain mismatch between develop-
ment and evaluation data can greatly deteriorate performance
in speaker recognition systems. [6] shows that, with the use of
OOD data for PLDA development, the equal error rate (EER)
is 3.4 times that when IND data is used. [7, 8] show a differ-
ence of 2.84 times.

Domain adaptation techniques, for adapting a resource-
rich OOD system so as to produce good results in a new

domain, have recently been studied with the aim of allevi-
ating this problem. They are either supervised adaptation
[6, 7, 9, 10], for which a small amount of IND data with la-
bels is available, or unsupervised adaptation [8, 11, 12, 13],
for which a large amount of IND data without labels is avail-
able. This paper focuses on the former, supervised adaptation.

Supervised domain adaptation methods can be further cat-
egorized into the following three approaches: 1) Data aug-
mentation. For example, [9] adds IND data to a large amount
of OOD data to train PLDA. 2) PLDA parameter adaptation.
[7] linearly combines parameters of PLDAs trained separately
with OOD data and IND data. 3) i-vector compensation. [6]
applies data shifting using the statistical information about
both IND and OOD data.

While 1) and 2) implicitly assume that simple interpola-
tion is enough, such an assumption may not be true if the
characteristics of OOD and IND are largely different. 3) uses
different criteria, such as maximum likelihood (ML) and min-
imum distance, that is different from those in PLDA training.
Such inconsistency may lead to some sub-optimal local solu-
tions. More flexible adaptation methods with a single global
criterion are desirable.

In this paper, we focus on supervised domain adapta-
tion and propose a learning algorithm that automatically and
simultaneously optimizes the PLDA parameters as well as
those for the transformation between two domains using
only one global criterion: maximum likelihood linear feature
transformation (MLLT).

The remainder of this paper is organized as follows: Sec-
tion 2 describes a typical speaker verification system based
on i-vectors and PLDA. Section 3 introduces a method of us-
ing MLLT in PLDA. Section 4 describes our experimental
setup, results, and analyses. Finally, Section 5 summarizes
our work.

2. I-VECTOR AND PLDA BASED SPEAKER
VERIFICATION

In an i-vector based speaker verification system [4], it is as-
sumed that a GMM-supervector ξ , corresponding to an utter-
ance can be modeled as

ξ = ξ̄ + Tx,
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where x is a random vector known as the i-vector, T is a basis
for the total variability space for speaker and channel variabil-
ity of ξ, and ξ̄ is the mean of ξ. It is assumed that x follows a
standard normal distribution and its dimension d is lower than
that of ξ̄ .

Probabilistic linear discriminant analysis (PLDA) decom-
poses the total variability into within-speaker and between-
speaker variability. Originally introduced in [1, 2] for face
recognition, PLDA has been heavily employed for speaker
recognition based on i-vectors [3, 4, 14]. Besides the origi-
nal PLDA formulation [2], there are two alternative variants
that assume full covariance: simplified PLDA [3] and a two-
covariance model [15]. In this study, we apply MLLT to the
two-covariance representation of PLDA introduced in [1, 15]
and used extensively in [16]. Here, it is assumed that there is a
latent variable yi representing speaker i, so that the observed
utterances {xij} of the speaker i share the same speaker vari-
able yi:

yi ∼ N (m,Φb), xij |yi ∼ N (yi,Φw),

where Φb and Φw are between- and within-speaker covariance
matrices, respectively, m is the global mean.

In the inference phase, given i-vectors of two utterances
x1, x2, PLDA calculates the log-likelihood ratio between two
hypotheses that they are from the same speaker (H0) or from
different speakers (H1). If the ratio is larger than a prede-
termined threshold, the two utterances belong to the same
speaker; otherwise, they do not [1].

3. MAXIMUM-LIKELIHOOD TRANSFORMATION

We propose a method that automatically optimizes the trans-
formation and PLDA parameters simultaneously using only
one global criterion. We also present a simplified algorithm
in which the optimization is conducted in two steps, on the
basis of which we carry out experiments.

3.1. PLDA-MLLT

Here, we first assume that between- and within-speaker co-
variances depend on domains, which means the covariances
Φ

(S)
b , Φ

(S)
w in the source domain (domain of OOD data) and

Φ
(T )
b , Φ

(T )
w in the target domain (domain of IND data) will

differ. We also assume that features x(T ) in the target domain
can be transformed into the source domain by applying an
affine transformation,

x̃(T ) = Ax(T ) + b,

so that in the source domain x̃(T ) and x(S) share the same
covariances Φ

(S)
b , Φ

(S)
w and mean m(S):

Φ
(S)
b ≈ Φ̃

(T )
b = AΦ

(T )
b AT ,

Φ(S)
w ≈ Φ̃

(T )
w = AΦ(T )

w AT ,

m(S) ≈ m̃(T ) = Am(T ) + b,

where (∗)(T ) represents IND (target domain); (∗)(S) repre-

sents OOD (source domain); (̃∗)
(T )

is transformed IND in
the source domain.

We aim to find the PLDA and MLLT parameters θ =

(A, b,Φ
(S)
b ,Φ

(S)
w ), under which the IND and OOD data are

most likely. Given N (S) OOD training patterns X(S) =

{X(S)
i |i = 1, · · · ,K(S)} and N (T ) IND training patterns

X(T ) = {X(T )
i |i = 1, · · · ,K(T )} from K(S) and K(T )

speakers respectively, where Xi = {xi,1, · · · , xi,ni
} is a set

of ni patterns from speaker i, the log-likelihood is

l(X(S), X(T )) =

K(S)∑
i=1

lnP (X
(S)
i ) +

K(T )∑
i=1

lnP (X
(T )
i ), (1)

P (Xi) =

∫
N(y|m,Φb)

ni∏
j=1

N(xij |y,Φw)dy,

where P (Xi) is the joint probability distribution of a set of
n
(S)
i or n(T )

i patterns belonging to the same speaker i in the
source or target domain.

With the ML criterion, parameters θ are estimated, with
the Expectation Maximization (EM) algorithm, as shown in
Fig. 1. Note that Φb, Φw and m in Fig. 1 represent the param-
eters in source domain. Since Eq. (3) has no analytic solution,
an iterative method is needed in the estimation of A.

3.2. 2-step PLDA-MLLT

2-step PLDA-MLLT is a simplified and computationally less
expensive formulation of the previous single-step one. It op-
timizes the MLLT parameters (A, b) using IND data, given
the PLDA model trained with OOD data. Then the PLDA is
adapted with (A, b) to the target domain, and it assigns scores
to the evaluation data. We conduct the 2-step PLDA-MLLT
in the following two steps:

Step 1 Apply PLDA with OOD data to estimate Φ
(S)
b ,Φ

(S)
w

by maximizing the first term in the r.h.s of Eq. (1).

Step 2 Given Φ
(S)
b ,Φ

(S)
w , estimate (A, b) by maximizing the

second term in Eq. (1). With EM algorithm, the estima-
tion formulation is obtained, which is a simplified form
of the single-step PLDA-MLLT (Fig. 1). It has Eq. (2)
as E-step and Eq. (3) – (4) as M-step.

Experiments presented in the next section were performed on
the basis of this formulation.

4. EXPERIMENTS

4.1. Experimental setup

We conducted experiments on the NIST SRE 2008 [5] core
task condition-6 (SRE08). The speaker verification system in
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E-step: Estimate the posterior from the latest θ ≡ θ = (A, b,Φb,Φw). L−1
i γi and L−1

i are the posterior mean and covariance
of speaker i’s i-vector. mi is the mean of the i-vectors of speaker i.

L
(T )
i = ĀT Φ̄−1

b Ā+ n
(T )
i ĀΦ̄−1

w ĀT , γ
(T )
i = ĀT Φ̄−1

b

(
m− b̄+ n

(T )
i ĀT Φ̄−1

w Āmi
(T )
)
, (2)

L
(S)
i = Φ̄−1

b + n
(S)
i Φ̄−1

w , γ
(S)
i = Φ̄−1

b m+ n
(S)
i Φ̄−1

w mi
(S).

M-step: Update the values of the parameter θ = (A, b,Φb,Φw). VP denotes a vector product: VP (z) = zzT . N (S), N (T ),
K(S), and K(T ) are the numbers of speakers and the numbers of utterances in OOD and IND data respectively.

Φb =
(
K(S) +K(T )

)−1

K(S)∑
i=1

(
L

(S)
i

−1
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(
L

(S)
i

−1
γ
(S)
i −m

))
+

K(T )∑
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(
ĀL

(T )
i

−1
ĀT + VP

(
ĀL

(T )
i

−1
γ
(T )
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)) ,
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(
N (S) +N (T )
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ij
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j=1

[
L

(T )
i

−1
+ VP

(
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(T ) − L
(T )
i
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)
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(
x
(T )
ij
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(
mi
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)]

=
(
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)
I, (3)

b = m− 1

K(T )
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k=1

(AL
(T )
i

−1
γ
(T )
i ). (4)

Fig. 1. Parameter estimation of PLDA-MLLT using the EM algorithm

the experiments was based on the i-vector and PLDA frame-
work described in Section 2. In the system, the input speech
segment was first converted to a sequence of acoustic feature
vectors, each of which consisted of 60 features (MFCC 1-20
and its ∆ and ∆∆) extracted from a frame of 25ms width at
a 10ms frame shift. Then an i-vector of 400 dimensions was
extracted from the acoustic feature vectors, 2048-mixture uni-
versal background model (UBM), and a total variability ma-
trix (TVM). After that, it was evaluated with a PLDA model.

The UBM and TVM were trained with the Fisher cor-
pus [17], which contains 12,399 speakers (OOD). For MLLT
training we used, as IND, data from NIST SRE04 of differ-
ent sizes representing 310 speakers, under the conditions of
1side, 3sides, 8sides, 16sides, 10sec, and 30sec. We utilized
the Kaldi speech recognition toolkit [18] to run all steps other
than that of MLLT. We used a stochastic hill climbing algo-
rithm [19] to estimate A in Eq. (3).

Results for the proposed method are compared with those
for the method using PLDA without adaptation (Section 2)
and those for a conventional method of domain adaptation
employing a linear combination of PLDA parameters [7] that
uses the standard EM algorithm twice to obtain IND and OOD
PLDA parameters and then linearly combines them using a
weight coefficient: Φb/w = αΦ

(T )
b/w + (1− α)Φ

(S)
b/w.

In the experiments, we used the 2-step PLDA-MLLT for-
mulation described in Section 3.2. We initialized A as a unit

matrix and b as a zero vector. 800 EM iterations were applied
to reach its convergence.

4.2. Experimental results

4.2.1. Performance gap

Fig. 2 shows the EERs for a PLDA model trained with OOD
data and for one trained with IND data. There is a consid-
erable gap in performance between a system trained on the
OOD Fisher set (red line) and a system trained on matched
IND SRE04 data (310 speakers). The gap is roughly 36%.
As the training data decreases, performance degrades simi-
larly to [20]. When it decreased to that for 100 speakers,
the performance suffered 54% degradation and was even 12%
worse than that for the system trained with OOD data. This
prompted us to explore the effect of adaptation approaches.

4.2.2. PLDA-MLLT

We compared the following 7 systems (S1-S7) in 4 cases, for
which 100, 150, 200, and 250 speakers in IND SRE04 were
available. S3 is the system of the proposed PLDA-MLLT.
S5 and S7 are its fusions at the model level and score level,
respectively. S4 is a conventional method.

S1 PLDA-OOD, PLDA trained with Fisher
S2 PLDA-IND, PLDA trained with SRE04
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Fig. 2. Comparison of performance of PLDA model trained
with OOD data and those trained with different numbers of
IND data

#speaker 100 150 200 250
S1: PLDA-OOD 7.62 7.62 7.62 7.62
S2: PLDA-IND 8.63 7.36 6.35 6.20
S3: PLDA-MLLT 6.98 6.16 6.24 6.01
S4: S1+S2 (MF) 6.57 5.82 5.75 5.79
S5: S3+S2 (MF) 6.81 5.82 5.71 5.75
S6: S1+S2 (SF) 7.01 6.52 6.15 5.89
S7: S3+S2 (SF) 6.81 5.81 5.68 5.66

Table 1. Equal error rates (EERs %) for the 7 systems. Bold
face denotes the best performance in each column.

S3 PLDA-MLLT, proposed single system, PLDA-OOD
adapted with MLLT trained with SRE04

S4 S1+S2 (MF), conventional method [7]. Model-level fu-
sion of S1 and S2

S5 S3+S2 (MF), model-level fusion of S2 and S3 with linear
combination in the same way as S4

S6 S1+S2 (SF), score-level fusion of S1 and S2 with Bosaris
toolkit [21]

S7 S3+S2 (SF), score-level fusion of S3 and S2

On the basis of the two assumptions given in Section 3.1,
it may be considered that PLDA-MLLT has transformed the
source domain to the target domain, so the PLDA after MLLT
adaptation may be thought to represent the target domain, i.e.,
that it is in the same domain as is PLDA-IND. For this reason,
it seemed reasonable to fuse PLDA-MLLT and PLDA-IND at
both model and score levels to get a better representation of
the target domain.

Table 1 shows the EERs for the 7 systems. For S4 and
S5, it only shows the best performance, obtained using their
optimal weight coefficients α. The relationship between their
performance and α is shown in Fig. 3.

As shown in Table 1, in all 4 cases (different numbers of
training speakers), the proposed PLDA-MLLT single system
S3 outperforms both S1 and S2, for which PLDA models are

Fig. 3. Relationship between performance and weight coeffi-
cients in model-level fusion

trained with OOD Fisher data and IND SRE04 data, respec-
tively. This indicates that MLLT indeed adapts the PLDA
model to the target domain. Comparing S4 and S5 (only
their best performances), which used the same model fusion
technique, we found our proposed system S5 got better per-
formance over wider ranges of α when150 or more speakers
were available, i.e. S5 was less affected by α. All in all, S7
was the best over all 7 systems when 150 or more speakers
were available.

5. SUMMARY

We have proposed a domain adaptation of PLDA based on
maximum likelihood Linear transformation (MLLT), which
assumes an affine transformation between different domains.
PLDA is iteratively trained by updating the MLLT transfor-
mation automatically with a single global criterion, an ap-
proach which does not seem to have been attempted in any
previous research. Experimentally, the proposed method has
been shown to improve speaker recognition performance with
a score fusion technique when 150 speakers or more of the
target domain were available.

In the experiments, we evaluated a 2-step algorithm that
had been produced as an approximation. Future issues in-
clude the implementation and evaluation of the single-step
algorithm. We also intend to seek more effective numerical
solutions to parameter estimation and more sophisticated non-
linear transformations to be used in adaptation.
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