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ABSTRACT 

Current countermeasures used in spoof detectors (for speech 

synthesis (SS) and voice conversion (VC)) are generally 

phase-based (as vocoders in SS and VC systems lack phase-

information). These approaches may possibly fail for non-

vocoder or unit-selection-based spoofs. In this work, we 

explore excitation source-based features, i.e., fundamental 

frequency (F0) contour and strength of excitation (SoE) at 

the glottis as discriminative features using GMM-based 

classification system. We use F0 and SoE1 estimated from 

speech signal through zero frequency (ZF) filtering method. 

Further, SoE2 is estimated from negative peaks of derivative 

of glottal flow waveform (dGFW) at glottal closure instants 

(GCIs). On the evaluation set of ASVspoof 2015 challenge 

database, the F0 and SoEs features along with its dynamic 

variations achieve an Equal Error Rate (EER) of 12.41%. 

The source features are fused at score-level with MFCC and 

recently proposed cochlear filter cepstral coefficients and 

instantaneous frequency (CFCCIF) features. On fusion with 

MFCC (CFCCIF), the EER decreases from 4.08% to 3.26% 

(2.07% to 1.72%). The decrease in EER was evident on both 

known and unknown vocoder-based attacks. When MFCC, 

CFCCIF and source features are combined, the EER further 

decreased to 1.61%. Thus, source features captures compl-

ementary information than MFCC and CFCCIF used alone.  

  

Index Terms—F0, SoE, MFCC, CFCCIF, anti-spoofing 

1. INTRODUCTION 

In voice biometrics or Automatic Speaker Verification 

(ASV) task, the speaker-specific information from the 

speech signal is used for authentication purpose with the 

help of machines. The characteristics of the speech signal 

being natural to produce makes it an adequate, easily 

accessible and convenient biometric modality. Current ASV 

systems with high accuracy and significantly low Equal 

Error Rates (EER) are still open to spoofing scenarios. 

Spoofing attacks  can be due to impersonation  (mimicking), 
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replay, speech synthesis (SS) and voice conversion (VC). 

The effect of these attacks on the % EER of ASV systems is 

reported in [1]. The ease of access of online sources to 

generate synthetic speech (i.e., by Hidden Markov Model 

(HMM)-based Text-to-Speech (TTS) systems and adapted 

HMM systems [2]- [3]) and voice converted speech [4]- [5] 

make them vulnerable to ASV systems.  

Previously proposed countermeasures were generally 

phase-based, including relative phase shift (RPS) [6]- [7], 

modified group delay [8], temporal modulation [9], etc. 

Most of these use Gaussian Mixture Model (GMM)-based 

classifier. Additional studies are also based on improving 

the back-end models [10]. Generally, these approaches were 

based on known attacks (i.e., using prior information of 

spoofing algorithm) instead of the real-case scenarios of 

unknown attacks or mismatched conditions. To address this, 

very recently, the ASVspoof 2015 challenge has been 

organized as a special session at INTERSPEECH 2015 [11].  

Here, the task was to design an ASV-independent detector 

to classify natural vs. spoofed speech for both known and 

unknown attacks [11]. A generalized dataset was provided 

by the organizers and results in % EER were returned based 

on the scores submitted. The various approaches proposed at 

the challenge used features based on magnitude and phase 

spectrum of group delay [12]- [13], relative phase [14]- [15] 

and exploring back-end of spoofing detectors [16]- [17]. 

Efforts had also been made to exploit new features such as 

Linear Prediction (LP) residual [18]- [19] and wavelet-based 

features [20] for spoof detection systems (SDS). For the 

challenge, the authors proposed a Cochlear Filter Cepstral 

Coefficients and Instantaneous Frequency (CFCCIF) feature 

which was relatively the best performing system [21]. The 

CFCCIF features use envelope at output of each cochlear 

subband filter, i.e., CFCC [22] and its IF information. 

In this work, we explore excitation source-based features 

to improve performance of SDS. Earlier in [23], [24], [25], 

pitch, pitch patterns and its variability were used to detect 

SS spoof. Not much work is reported for VC spoof. In this 

work, we explore F0 contour and strength of excitation 

(SoE) features at the glottal closure instants (GCIs) in the 

voiced regions to detect spoofed speech. We use F0 and 

measures of SoE1 estimated from the speech signal through 

zero frequency (ZF) filtering method [26]. The ZF filtering 

is used due to its effectiveness to estimate both F0 and 
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excitation strength from speech. The SoE2 is estimated from 

negative peaks of derivative of Glottal Flow Waveform 

(dGFW). The GFW is estimated by Iterative Adaptive 

Inverse Filtering (IAIF) method [27]. Humans vary their 

vocal fold movements and SoE at the glottis depending on 

the type of utterance which can affect the F0 contour and the 

SoE of the speech. However, there is no true glottal closure 

phenomenon during generation of spoofed speech. Thus, 

relationship between F0 and SoEs of natural and spoofed 

speech should be different. In addition, it was observed that 

their dynamic information provided good discrimination 

even with much less feature dimensions. Individually, 

MFCC and CFCCIF features gave low % EER on known 

and unknown attacks, respectively. When information from 

source-based features (i.e., F0, SoE1 and SoE2 and their 

dynamics) were fused with MFCC and CFCCIF features at 

score-level, the EER decreased further. Thus, improvement 

in performance of SDS on using source-based information 

demonstrate that natural and spoofed speech vary in terms 

of excitation source characteristics which should be further 

explored as discriminative features in spoof detection. 

2. DESCRIPTION OF SOURCE FEATURES 

2.1. Estimation of F0 and SoE from the Speech Signal 

The ZF filtering method, also known as 0-Hz resonator [26] 

is used here to obtain the excitation source information. The 

idea is effect due to an impulse is uniformly spread across 

all frequency regions including zero frequency. When 

speech is passed through a ZF filter, the vocal tract 

information from speech signal is separated. The negative-

to-positive zero-crossings of the filtered signal provide an 

estimate of the GCIs and hence, the F0 contour is estimated. 

The slope of ZF filtered signal at negative-to-positive zero-

crossings gives a measure of the strength of glottal closure, 

i.e., SoE [28]. The slope (or derivative) is a point property of 

a system which at the negative-to-positive zero-crossings 

indicates the strength of abruptness of glottal closure. Thus, 

both F0 contour and SoE is estimated from 0-Hz resonator.  

2.2. Estimation of SoE from dGFW 

The GFW results from the movement of slit-like opening 

between the glottal folds called glottis. The glottal flow may 

be gradual or sudden depending on the movement of the 

glottis. Using IAIF method, the effect of the vocal tract 

system and lip radiation is cancelled from speech to estimate 

the GFW [27]. Thereafter, its derivative is computed and 

negative peak of the dGFW at GCIs gives the SoE at GCI. 

The strength of the negative peaks of dGFW indicates the 

strength/force with which the glottis closes. Fig. 1 shows the 

F0 and SoE derived from speech (SoE1) and dGFW (SoE2) 

for a natural speech (Panel I) and HMM-based SS spoof 

from the SAS database (Panel II) [29]. In Fig. 1 (d), only the 

negative part of the dGFW is plotted and the magnitude of 

dGFW at the GCI is indicated as SoE2 in Fig 1(d).  

  

 

Fig. 1. Panel I: Natural speech and Panel II: Spoofed speech (SS) 

(a) speech signal \it’s nice to hear\, (b) F0 contour estimated by ZF 

filtering  method (c) normalized SoE1 at GCIs estimated by ZF 

method and (d) the dGFW (red) and normalized SoE2 estimated 

from dGFW at GCI’s from ZFF method (dotted blue).  

The relation between source-based features for natural 

and SS spoof in Fig 1 is shown by scatter plot of F0, SoE1 

and SoE2 at GCIs in Fig. 2. The correlation coefficients 

between: F0 vs. SoE1, SoE1 vs. SoE2 and SoE2 vs. F0 are 

0.51, 0.73 and 0.51 for natural speech and 0.34, 0.645 and 

0.45 for SS speech, respectively. Thus, it is observed that 

correlations vary for natural and SS speech. In addition, as 

shown by dotted regions in Fig. 1, there exist variations in 

excitation source features for natural and SS speech. Such 

variations were found over several utterances for SS and VC 

spoof. Although a direct relationship amongst F0, SoE1 and 

SoE2 cannot be specified for different spoofing algorithms, 

there do exist differences in natural and spoofed speech due 

to excitation source characteristics. This is verified by using 

F0, SoE1 and SoE2 and their dynamics as discriminative 

features for proposed spoof detection task in Section 4. 
               

 
Fig. 2. Scatter plots (a) F0 vs. SoE1 (b) SoE1 vs. SoE2 and (c) SoE2 

vs. F0 for the natural and spoofed (SS) utterances in Panel I and 

Panel II (from Fig. 1), respectively.  

3. EXPERIMENTAL SETUP 

3.1. Database  

The database provided for the ASVspoof 2015 challenge is 

used here for experiment purpose. Details of spoofing (S) 

algorithms are provided in [11]. The training and deve-

lopment dataset consists of spoofed utterance generated by 
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five spoofing algorithms while evaluation data was based on 

ten spoofs, i.e., both known and unknown attacks. The S3, S4 

and S10 are SS spoof and remaining are VC spoofs. The S5 

VC spoof uses Mel Log Spectrum Approximation (MLSA) 

filter [30] and S10 SS spoof is vocoder-independent based 

on Modular Architecture for Research on speech sYnthesis 

(MARY) TTS system [31] that uses FESTIVAL framework 

[32]. Other spoofs are STRAIGHT vocoder-based [33].  

Table 1. Summary of utterances used in training, development and 

evaluation sets of the ASVspoof 2015 challenge database [11] 

 No. of speakers No. of utterances 

Dataset Male Female Genuine Spoofed 

Training (S1-S5) 10 15 3750 12625 

Development (S1-S5) 15 20 3497 49875 

Evaluation (S1-S10) 20 26 9404 184000 

3.2. Classifier Details and Performance Evaluation 

Gaussian Mixture Model (GMM) is used to model classes 

corresponding to natural and spoofed speech (using speech 

from training dataset). Scores are represented in terms of 

log-likelihood ratio (LLR). The decision of the test speech 

being human or spoofed is based on the LLR, i.e., 

log( ) log( ),human spoofLLR llk llk               (1) 

where llkhuman and llkspoof are the likelihood scores from 

the GMM of human and spoofed speech, respectively. To 

utilize possible complementary information in source-based 

features as compared to acoustic features (such as MFCC 

and recently proposed CFCCIF features), we use their score-

level fusion, i.e., 

1 2(1 ) ,combine f feature f featureLLk LLk LLk           (2)       

where LLk feature1 and LLkfeature2 are log-likelihood score of 

MFCC/CFCCIF and excitation source features, respectively. 

Parameter αf decides the weights for fusion. Detection Error 

Tradeoff (DET) curve is used to measure the performance of 

SDS [34]. The operating point where the false acceptance 

rate (FAR) and false rejection rate (FRR) becomes equal is 

called as EER and is used as performance measure [35].  

3.3. Feature Sets  

The source features, i.e., F0, SoE1 and SoE2 are extracted at 

GCIs estimated by ZF and IAIF method using a frame size 

of 25 ms and with a shift of 50%. The F0, SoE1 and SoE2 

gives a 3-dimensional (3-D) static feature vector i.e., Ds for 

each GCI location. The dynamics of the F0, SoE1 and SoE2 

features are also considered by taking their first derivative, 

i.e., velocity, (d1: ΔF0, ΔSoE1 and ΔSoE2) and appended to 

the Ds to get 6-D feature vector (D1=Ds+d1). This was 

done till 5
th

 order derivative (i.e., acceleration, jerk, jounce, 

crackle) to get D2, D3, D4 and D5, corresponding to 9-D, 

12-D, 15-D and 18-D feature vectors, respectively. For 

score-level fusion, 36-D MFCC and 36-D CFCCIF feature 

vectors comprising of static and dynamic (i.e., 12static+12Δ 

+12ΔΔ) are used in addition to source-based features. 

4. EXPERIMENTAL RESULTS  

4.1. Results on Development Set 

4.1.1. Effect of source features and their dynamics 

The effect of source features and their dynamics is studied 

by evaluating the % EER of the detector on the development 

set when trained on the training data for various number of 

mixture components in GMM (as in Fig. 3). It is observed 

from Fig. 3 that the %EER on the development set decreases 

significantly when the dynamic information is added to the 

static features. The decrease is significant with the increase 

in number of mixture models. The % EER with 128 mixtures 

for Ds, D1, D2, D3, D4 and D5 are 24.8%, 16.1%, 13.6%, 

12.7%, 12.8%, and 13.4%, respectively. With higher-order 

derivative than the jerk (D3), the decrease is not significant 

and also increases slightly. Thus, throughout this work, D3 

feature vector with 128 mixtures GMM will be considered.  

 

Fig. 3: The % EER obtained on the development set when the 

static and various dynamics, i.e., velocity, acceleration, jerk, 

jounce and crackle of F0, SoE1 and SoE2 are considered. 

To observe the effect of F0, SoE1 and SoE2, the % EER 

with F0, SoE1 and SoE2 used individually up to third order 

derivative (i.e., 12-D) was estimated. Next, the performance 

on using only two features at a time was also studied. It was 

observed from Table 2 that individually for F0, SoE1 and 

SoE2 features, the % EER is very high ~27%. Surprisingly, 

on combining F0 features with two SoEs, the % EER 

increased, while on combining the two SoEs the % EER 

decreased (indicating that the SoEs capture complementary 

information). However, the % EER is not less than 12.7% 

that was obtained when all three features are used (Fig. 3). 

Thus, all F0, SoE1 and SoE2 features are essential for SDS. 

Table 2. The % EER of F0, SoE1 and SoE2 features used alone and 

when combined with each other using D3 feature set 

Individual % EER Combined % EER 

D3: F0 27.94 D3: F0 & SoE1 45.98 

D3: SoE1 25.54 D3: F0 & SoE2 43.92 

D3: SoE2 27.68 D3: SoE1 & SoE2 18.82 

4.1.2. Fusion of source-based features 

The source-based features, (D3 feature vector) were fused at 

score-level with MFCC and CFCCIF features (as in eq. (2)). 

It was observed that for αf = 0.3 for MFCC and αf = 0.2 for  
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Table 3. The % EER of F0, SoE1 and SoE2, MFCC and CFCCIF along with their score-level fusion on the evaluation set. 

 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Known Unknown Average 

Ds 16.4 57.46 25.3 24.1 10.1 19.8 16.5 13.84 24.13 56.63 26.66 26.17 26.41 

D1 2.66 55.76 11.4 10.8 2.82 8.59 7.11 5.86 10.25 61.29 16.68 18.62 17.65 

D2 0.07 54.96 8.13 7.95 0.90 3.40 2.68 1.82 4.23 56.55 14.40 13.74 14.07 

D3 0.01 53.90 6.35 6.34 0.23 1.58 0.86 0.58 2.99 51.25 13.37 11.45 12.41 

MFCC 0.01 1.04 0.00 0.00 0.86 0.94 0.05 0.00 0.09 37.80 0.38 7.78 4.08 

CFCCIF 0.03 0.72 0.00 0.00 2.24 0.98 0.16 0.88 0.29 15.42 0.60 3.55 2.07 
 

MFCC+Ds (αf =0.3) 0.00 1.11 0.00 0.00 0.43 0.54 0.03 0.00 0.07 36.13 0.31 7.35 3.83 

MFCC+D1 (αf =0.3) 0.00 0.88 0.00 0.00 0.22 0.38 0.03 0.00 0.04 34.39 0.22 6.97 3.59 

MFCC+D2 (αf =0.3) 0.00 0.73 0.00 0.00 0.12 0.22 0.02 0.00 0.03 32.27 0.17 6.51 3.34 

MFCC+D3 (αf =0.3) 0.00 0.76 0.00 0.00 0.08 0.18 0.02 0.00 0.03 31.58 0.17 6.36 3.26 
 

CFCCIF+Ds (αf =0.2) 0.02 0.82 0.00 0.00 1.28 0.74 0.11 0.71 0.25 15.32 0.42 3.43 1.92 

CFCCIF+D1 (αf =0.2) 0.01 0.68 0.00 0.00 0.83 0.51 0.08 0.58 0.17 15.12 0.30 3.29 1.80 

CFCCIF+D2 (αf =0.2) 0.00 0.67 0.00 0.00 0.55 0.34 0.06 0.46 0.08 14.75 0.24 3.14 1.69 

CFCCIF+D3 (αf =0.2) 0.00 0.74 0.00 0.00 0.40 0.33 0.05 0.37 0.08 15.26 0.23 3.22 1.72 
    

D3+ MFCC+CFCCIF 0.00 0.375 0.00 0.00 0.18 0.16 0.02 0.087 0.022 15.30 0.11 3.12 1.61 

 

CFCCIF the EER on the development set decreased from 

1.6% to 1.02% and 1.5% to 0.71%, respectively. This EER 

achieved on the development set is less than that submitted 

by the authors in their work for the ASVspoof 2015 

challenge (i.e., 0.83% with fusion of MFCC and CFCCIF). 

Thus, from the development set, αf = 0.3 and αf = 0.2 is 

decided for fusion of source-based features with MFCC and 

CFCCIF on the evaluation set, respectively. The lesser 

contribution of source features when fused with CFCCIF is 

justified due to its embedded additional IF information.  

4.2. Results on Evaluation Set 

The results on the evaluation set for source-based features, 

MFCC and CFCCIF with % EER for individual known and 

unknown spoofs are shown in Table 3. It is seen that on an 

average, CFCCIF features gives the best % EER amongst all 

features considered. The average % EER of source-based 

features decreases with increase in dynamic information, 

i.e., Ds to D3 for F0, SoE1 and SoE2 features. It is observed 

that individually MFCC and CFCCIF work well for known 

and unknown attacks, respectively. However, when source 

information is fused at score-level with MFCC and CFCCIF 

(as in eq. (2)), the average EER decreases from 4.08% to 

3.26% for MFCC and 2.07% to 1.69% for CFCCIF. Thus, 

F0, SoE1 and SoE2 features contribute to decrease in % 

EER. Furthermore, on fusing F0, SoE1 and SoE2 (D3 source 

features), with MFCC (spectral) and CFCCIF (envelope in 

time-domain and IF) at all possible αf, a weight factor of 0.2, 

0.1 and 0.7, respectively, gave the best EER of 0.11% for 

known attacks and 3.12% for unknown attacks. This is 

considered as the best fusion. The decrease is more evident 

on vocoder-based attacks than on non-vocoder attacks (S10).  

The DET curves for MFCC, CFCCIF and source-features 

individually and the best fusion is shown in Fig. 4 (a). It is 

seen that MFCC and CFCCIF had high % FRR and % FAR 

than each other, respectively, which decreases when both 

are  fused  (this system was submitted by  the authors for the  

 

ASVspoof 2015 challenge submission (Fig. 4 (b)). However, 

when the source features were added, the % EER further 

decreases. This best fusion performs relatively best at 

almost all operating points of the DET curve (Fig. 4 (b)). 

  
(a)                                                (b) 

Fig. 4: (a) DET curve for MFCC (magenta), CFCCIF (blue), 

source features with their dynamics (D3) (red) and proposed best 

fusion (black), (b) DET curve for the relatively best system at the 

ASVspoof 2015 challenge (cyan) and proposed best fusion (black). 

5. SUMMARY AND CONCLUSIONS  

In this work, we explore F0 contour and SoE as source-

based features from speech signal for spoof detection. A 

simple GMM classifier with only 12-D feature vector of F0, 

SoE1 and SoE2 with its dynamics is used. The EER reduced 

significantly for vocoder-based attacks when fused at score-

level with 36-D MFCC and 36-D CFCCIF. At the ASV 

spoof 2015 challenge, generally phase-based methods were 

used as vocoders in state-of-the-art SS and VC techniques 

lack phase information. These countermeasures gave less % 

EER for known attacks. However, they performed poorly 

for non-vocoder MARY TTS spoof (S10) with around 20-40 

% EER. In future, we plan to explore additional excitation 

source features, especially for non-vocoder attacks. Various 

aspects of the source-related information are essential to 

develop generalized countermeasures and to precisely detect 

wide range of spoofing attacks against ASV systems.   
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