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ABSTRACT

Deep neural networks (DNN) are a powerful tool for many large vo-
cabulary continuous speech recognition (LVCSR) tasks. Training a
very deep network is a challenging problem and pre-training tech-
niques are needed in order to achieve the best results. In this paper,
we propose a new type of network architecture, Linear Augmented
Deep Neural Network (LA-DNN). This type of network augments
each non-linear layer with a linear connection from layer input to
layer output. The resulting LA-DNN model eliminates the need for
pre-training, addresses the gradient vanishing problem for deep net-
works, has higher capacity in modeling linear transformations, trains
significantly faster than normal DNN, and produces better acoustic
models. The proposed model has been evaluated on TIMIT phoneme
recognition and AMI speech recognition tasks. Experimental re-
sults show that the LA-DNN models can have 70% fewer param-
eters than a DNN, while still improving accuracy. On the TIMIT
phoneme recognition task, the smaller LA-DNN model improves
TIMIT phone accuracy by 2% absolute, and AMI word accuracy
by 1.7% absolute.

Index Terms— Linear Augmented Network, deep network, pre-
training, acoustic modeling

1. INTRODUCTION

Modern speech recognition systems employ deep neural network
acoustic models using millions of parameters [1]. Deeper networks
can represent certain function classes better than shallower ones and
the use of deep networks can offer both computational and statistical
efficiency for complex tasks [2]. Deep structure promotes re-use of
features and learns a hierarchy of features, which leads to more ab-
stract features at higher layers. More abstract concepts are invariant
to most local changes of the input.

But, training a deep network with a large number of layers is a
challenging problem. The gradient vanishing problem is the main
issue, where the gradient vanishes exponentially with the number of
layers it passes through. Unsupervised pre-training is often used to
help training deep networks with improved parameter initialization
[3]. Another useful approach is to change the loss function by intro-
ducing a companion objective to the individual hidden layers, in ad-
dition to overall objective at the output layer [4]. Exploiting certain
activation functions [5] may help to train deeper networks. Max-
out networks can work much better with increased depth that other
activation functions, however [6] reported that training on CIFAR-
10 with plain SGD was only possible for maxout networks with a
depth up to 5 layers. Training of deeper networks was only possible
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with two-stage training and addition of soft-targets produced from a
pre-trained teacher network.

Additionally, training and evaluating the DNN comes with a
great computational cost. It has been shown that many parameters
in DNN are very small and barely affect output values of each layer
[7]. Re-structuring the DNN model based on sparseness of the orig-
inal model using singular value decomposition (SVD) is used to de-
crease model size and computation during decoding [8]. However,
this method does not reduce model size and computation time during
training.

In this paper, we propose a novel type of network architecture
with a specific SVD layer structure. This structure enables us to
model the network with a substantial parameter count reduction.
This architecture can model a very deep network without any pre-
training. We show a theoretical connection between new model, pre-
training, and how it handles the issue of gradient vanishing problem.

This paper is organized as follows. Section 2 describes our pro-
posed Linear Augmented DNN model. Section 4 describes the train-
ing method used for training LADNN model, and Sections 5 presents
the results on TIMIT [9] and AMI-HMI tasks, and Section 6 presents
the conclusions.

2. LINEAR AUGMENTED DNN MODEL

The conventional DNN model is a composition of several layers,
where each layer consists of an affine transformation followed by a
nonlinear function. The output unit y in each layer can be described
using the input vector x, weight matrix W, bias vector b, and non-
linear function σ as

y = σ(Wx+ b) (1)

The SVD-DNN architecture employs SVD based layers, where
the weight matrix in each layer is decomposed into two lower rank
matrices with smaller dimensions. In the SVD-DNN, each nonlin-
earity is preceded by an affine transformation Ux+b, and followed
by a linear transformation V.

y = Vσ(Ux+ b) (2)

If we consider this transformation to be the effective layer type
for the SVD-DNN, it is clear that it uses a nonlinear mapping to
transform from a continuous vector x to a continuous vector y. If the
optimal transformation for each layer contains a linear component, it
would be difficult for this SVD-DNN layer type to learn. Nonlinear
functions such as the sigmoid would need to allocate many param-
eters to deconstruct the vector space into overlapping regions, and
then rebuild it again.

The proposed LA-DNN architecture is a straightforward modi-
fication of Equation 2. It connects the input x to the output y using
a linear bypass connection. The linear bypass T can be modeled as
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the identity, diagonal, or a full transformation.

y = Vσ(Ux+ b) +Tx (3)

Figure 2 shows graphical representation of single layer in the
LA-DNN model. We interpret the weight matrix T as weight fac-
tors for input dimensions, which determine the portion of linear and
nonlinear terms for each output dimension. Using diagonal transfor-
mation provides a balance between flexibility and parameter counts
in model and it is the best configuration in our experiments. Fig-
ure 3 represents the mean and variance of diagonal elements of for
each layer in a fully trained LA-DNN model with diagonal bypass
connections. The average value of diagonal terms decrease for layers
closer to output layer, which shows these layers rely on the nonlinear
components and model more complex functions.

The LA-DNN model can be interpreted as a combination of dif-
ferent layer-based classifiers, where the output layer as a final hy-
pothesis is a weighted combination of these classifiers. Figure 1
shows LADNN structure as a composition of different layers. The
output of network y can be written as

y = C0x1 +C1f1(x1) + ...+Cn−1fn−1(xn−1) + fn(xn) (4)

Ci =

n∏
j=i+1

Tj (5)

where fi is the function correspond to layer i and xi is the input
features for this layer.
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Fig. 1. Linearly Augmented DNN structure as a composition of dif-
ferent layers.

As discussed, the main problem in training very deep neural net-
works is the gradient vanishing problem [10]. For a very deep con-
ventional DNN, the back-propagated error tends to vanish exponen-
tially as it passes through more and more layers. We can mathemat-
ically show that LA-DNN model handles gradient vanishing prob-
lem. If the objective function L is a function of y, then gradient w.r.t
parameter wk

ij , which is wij in layer k is computed as

∂L
∂wk

ij

=
∂L
∂y

∂y

∂wk
ij

=
∂L
∂y

n∑
l=k

CI
∂fl(xl)

∂wk
ij

+ fl
∂Cl

∂wk
ij

(6)

where
∂fl(xl)

∂wk
ij

=
∂fl(xl)

∂xl

l∏
m=k

∂xm

∂xm−1
(7)

So the gradient in LA-DNN model is computed as

∂L
∂wk

ij

= Ck
∂L
∂y

∂f(xk)

∂wk
ij

+ ... (8)

Assuming the bypass connection as identity or diagonal matrix, Ck

is the diagonal matrix with diagonal term in range ckii is 0.8n−k to
1.0. So the gradient ∂L

∂wk
ij

has an extra term which is not exponen-

tially decreasing with layer depth k, where in conventional DNN, the
gradient is decaying exponentially as a function of layer depth.
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Fig. 2. Linearly Augmented DNN(LA-DNN) vs. Spliced DNN
(S-DNN) structure.

Fig. 3. Mean and Variance of diagonal weight for linear connection
for different layers in final model.

3. SPLICED DNN MODEL

Figure 2 represents the structure of Spliced network, which is an
extended form of LA-DNN model. In the LA-DNN model, X2,mid

is modeled as

x2,mid = U2(V1σ(U1x+ b) +Tx) (9)

We use tied transformation U2 to model middle layer x2,mid as a
summation of linear part U1Tx and nonlinear part U2(V1σ(U1x+
b)). Spliced DNN(S-DNN) uses untied transformation to combine
the linear and nonlinear part and model x2,mid as

x2,mid = U2(V1σ(U1x+ b)) +Wx (10)

where W is a full matrix. This type of network is called spliced
DNN, since it splices the input of each layer x to the input of the
next layer f(x), and the output y is modeled as

y = [U2 W]

[
f(x)
x

]
(11)

This Spliced DNN has different structure compared to Deep stacking
networks [11]. In Deep stacking network, the input of layer l is the
outputs of all previous layers stacked together, which increase input
dimension, specially in very deep network such as network with 100
layers. The interpretation for expanding the space of output using
input space is that some information can be lost from input space in
each layer and by splicing the input. In the S-DNN, this information
is directly transferred to the output space using linear transformation.
The main difference between the LA-DNN and S-DNN is about their
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training speed, where the LA-DNN model trains faster than S-DNN.
In S-DNN model, the error back propagated using a full transfor-
mation matrix during error back-propagation, which slows down the
training speed in this model compared to LA-DNN model. Also it
uses full transformation as bypass connection in each layer, which
increases the number of parameters in this model.

4. LA-DNN TRAINING

This section explains the key features used in training LA-DNN
model. The new network architecture has higher learning capacity
and it requires fewer parameters compared to the conventional DNN
model. The training and validation cross-entropy for the LA-DNN
model is much better than conventional DNN model after just few
training iterations. Since the LA-DNN is much closer to the basin
of attraction of local optimum than the DNN after few iterations, its
initial learning rate should be smaller than baseline DNN to stabilize
training.

The LA-DNN converges much faster than the baseline DNN,
which can lead to over-training. We use number of methods to keep
the training stable and avoid over-training in the LA-DNN. Firstly,
we used the learning rate auto adjustment technique called “adjust
after epoch” in the CNTK tool. It automatically reduces the learning
rate by a constant factor, if after an epoch, the cross entropy on the
validation set has degraded. Secondly, we enforce small changes in
the parameters by gradient clipping, which controls gradient explo-
sion, and employ L2 regularization.

5. EXPERIMENTS

Experiments were done using CNTK toolkit[12] on TIMIT and AMI
to evaluate the performance of proposed model. The input features
are normalized by subtracting the mean and dividing by the standard
deviation on each dimension to whiten the input features in all ex-
periments. The model parameters are randomly initialized, and the
simple SGD optimization method is used in all experiments. We
used the Argon speech recognition decoder to decode our experi-
ments, which is a dynamic WFST based decoder.

5.1. Experiment on TIMIT

We first evaluated the proposed model on TIMIT database [9]. The
25ms window size with frame shift 10ms used to extract MFCC fea-
tures in our experiments. For the TIMIT configuration, the input
layer contains 1080 neurons, which is +/ − 7 frames of 24 di-
mensional MFCCs with their first and second temporal derivatives
spliced together. We used SGD as optimization method and we used
learning rate auto-adjustment method. The initial learning rate per
mini-batch for baseline and LA-DNN model are 1 and 0.4 respec-
tively. Table 1 shows number of layers and layer dimensions in dif-
ferent experiments. As discussed, the proposed model trains faster
than the baseline model and we should use smaller initial learning
rate to stabilize the training. The best baseline DNN system used
contains 2 hidden layers, each with 2048 units. The DNN parameters
in both models are initialized randomly and cross entropy criterion
used for training.

We did experiments using Sigmoid and Rectified linear unit [13]
nonlinearities. As can be seen, the new model got 1.5% absolute
WER improvement using networks with 70% fewer parameters. To
show the power of LA-DNN model in modeling very deep structure
using random initialization, we run a series of experiments with dif-
ferent number of layers. We keep the number of parameters constant

in these experiments to investigate the effect of network depth and
not involve the effect of adding more parameters. As can be seen,
we get more PER improvement by training deeper network, which
shows that we can have a more abstract and better generalized model
by training deeper networks.

5.2. Experiment on AMI

We used AMI corpus [14] for our experiments, which is around 100
hours of meetings recorded in specifically equipped instrumented
meeting rooms at three sites in Europe. We did our experiments
on the IHM set.

Our DNN configuration contains 15 frames (7 frames on each
side of current frame) of 24 dimensional MFCC feature with its ve-
locity and acceleration. The output layer contain 5000 senones and
Table 2 shows the number of hidden layers and their size in different
experiments. The DNN is randomly initialized and no pre-training
or speaker adaptation methods used in these experiments. The base-
line DNN WER results with no pre-training has same WER results
reported by [15], where they used stacked restricted Boltzman ma-
chines(RBMs) in a greedy layer-wise fashion [16] for parameter ini-
tialization. The same 50000 word AMI pronunciation dictionary as
[17] used in these experiments. The Language model has 1.6 million
trigram and 1.5 million bi-grams.

Table 2 compares different LA-DNNs and conventional DNN
using different nonlinearities and same number of layers. As can
be seen, the best baseline DNN system using Sigmoid nonlinearity
has 37.6 million parameters and it gets 31.67 WER. The best base-
line DNN system using ReLU nonlinearity gives 31.54% WER. The
main problem with Rectified linear units and baseline model is about
model depth, where the units in the first layers are mostly inactive
or saturated and the parameters are not trained in the beginning lay-
ers. The LA-DNN architecture handles this issue using bypass con-
nection and the best LA-DNN model uses Rectified linear units as
nonlinearity. The best LA-DNN system has 10.5 million parameters
with Rectified Linear units nonlinearity. This model achieves a word
error rate of 30.68%, which is 0.86% absolute better than the best
baseline DNN.

As can be seen, the S-DNN gives good improvement compared
to the baseline DNN. It is less sensitive to over-training compared to
LA-DNN model and it is required to use l2-regularization technique
during training. On the other hand, S-DNN uses full transformation
for transferring the information to the next layer, which results in
slower convergence and larger model size compared to the LA-DNN.
As can be seen, the best S-DNN has 13.1 million parameters and this
model achieves word error rate of 30.44%, which is 1.1% absolute
better than the best baseline DNN.

To verify the advantage of the proposed model in building very
deep networks, we built different LA-DNN models with approxi-
mately the same number of parameters and different numbers of lay-
ers. Table 3 presents the experimental results, where it is clear that
LA-DNN model overcomes the pre-training problem. The deeper,
smaller networks have the best performance. The model using 48
layers got 29.9% WER, which is about 1.7% better than our best
DNN model. We tried to train the baseline DNN with larger number
of layers, but it degrades the results and we can not train very deep
baseline network such as 12 layers starting from random initializa-
tion and without pre-training. We also tried to increase number of
parameters for deepest network with 48 layers and as can be seen
it give 0.28 WER improvement relative to a smaller network with
same depth.
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Network Size Training Validation
Model Num.of.H Layers Layer.Size Params CE % Frame Err CE % Frame Err % PER
DNN+Sig 2 2048X2048 10.9M 0.66 21.39 1.23 37.67 23.63
LA-DNN+Sig 4 1024X512 5.9M 0.61 20.5 1.18 35.83 22.39
LA-DNN+Sig 6 1024X512 8.0M 0.60 20.3 1.18 35.7 22.28
LA-DNN+Sig 8 1024X256 5.6M 0.58 19.7 1.19 35.7 22.08
LA-DNN+Sig 12 512X512 7.2M 0.65 22.08 1.16 35.74 22.08
LA-DNN+ReLU 3 1024X256 2.9M 0.61 20.7 1.20 35.77 22.39
LA-DNN+ReLU 6 1024X256 4.5M 0.54 18.6 1.22 35.5 22.08
LA-DNN+ReLU 12 512X256 3.8M 0.55 19.2 1.21 35.5 21.8
LA-DNN+ReLU 24 256X256 3.5M 0.55 19.31 1.21 35.3 22.06
LA-DNN+ReLU 48 256X128 3.4M 0.56 19.5 1.21 35.4 21.7

Table 1. Results on TIMIT using different models.

Network Size Training Validation
Model Num.of.H Layers Layer.Size Params CE Frame Err CE Frame Err WER
DNN+Sigmoid 6 2048X2048 37.62M 1.46 37.83 2.11 49.3 31.67
DNN+Sigmoid 6 1024X1024 12.52M 1.59 40.75 2.13 50.0 32.43
DNN+ReLU 6 1024X1024 12.52M 1.45 37.8 1.98 47.2 31.54
LA-DNN+Sigmoid 6 2048X512 18.4M 1.35 35.3 31.88
LA-DNN ReLU 6 1024X512 10.5M 1.34 35.77 2.02 47.3 30.68
Spliced-DNN+Sigmoid 4 1024X512 10M 1.53 39.2 2.08 49.13 31.86
Spliced-DNN+ReLU 6 1024X512 13.1M 1.42 37.0 1.95 46.8 30.44

Table 2. Results on AMI using different models.

Network Size Training Validation
Model Num.of.H Layers Layer.Size Params CE % Frame Err CE % Frame Err % WER
DNN+ReLU 6 1024X1024 12.52M 1.45 37.8 1.98 47.2 31.54
LA-DNN+ReLU 3 2048X512 12.1M 1.34 35.57 2.03 47.8 31.5
LA-DNN+ReLU 6 1024X512 10.5M 1.34 35.76 2.00 47.3 30.68
LA-DNN+ReLU 12 1024X256 8.9M 1.319 35.15 2.01 47.2 30.41
LA-DNN+ReLU 12 512X512 9.6M 1.34 35.77 1.98 46.9 30.22
LA-DNN+ReLU 24 512X256 8.2M 1.34 35.7 2.00 47.01 30.18
LA-DNN+ReLU 48 256X256 7.9M 1.35 35.9 1.97 47.01 29.98
LA-DNN+ReLU 48 512X256 14.4M 1.25 33.9 2.00 46.7 29.7

Table 3. Results on AMI using LA-DNN model with different number of layers.

6. CONCLUSION

In this work, we presented some promising results on using new pro-
posed LA-DNN model for speech and phoneme recognition tasks.
We show that we can get better results using a smaller network that
converges faster than the baseline DNN model. More interestingly,
we show that we can train very deep networks without pre-training,
which is not possible using the regular DNN architecture. This ca-
pability in modeling deeper network with smaller number of param-
eters gives us the possibility to investigate the effect of depth and to
construct a more abstract and generalized model.
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