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ABSTRACT

Tandem neural network features, especially ones trained
with more than one hidden layer, have improved word recog-
nition performance, but why these features improve automatic
speech recognition systems is not completely understood. In
this work, we study how neural network features cope with
the mismatch between the underlying stochastic process in-
herent in speech, and the models we use to represent that
process. We use a novel resampling framework, which re-
samples test set data to match the conditional independence
assumptions of the acoustic model, and measure performance
as we break those assumptions. We discover that depth pro-
vides modest robustness to data/model mismatch at the state
level, and compared to standard MFCC features, neural net-
work features actually fix poor duration modeling assump-
tions of the HMM. The duration modeling problem is also
fixed by the language model, suggesting that the dictionary
and language model make very strong implicit assumptions
about phone length, which may now need to be revisited.

Index Terms— Neural Networks, Deep Learning, Tan-
dem Features, Hidden Markov Models

1. INTRODUCTION

The recrudescence of neural networks as a research focus for
Automatic Speech Recognition (ASR) systems emerges from
a growing body of empirical evidence showing that the use of
such models improves word recognition performance. Since
work in [1], modifications to neural network models have led
to a steady drop in recognition error rates, and perhaps a bit
unsurprisingly, more research has focused on exploring new
models rather than trying to understand what exactly is caus-
ing improvements in existing ones.

Despite the rapid evolution in neural network models
for ASR – proposed models such as CTC-trained RNNs [2]
attempt to replace the now-standard DNN-HMM acoustic
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model–, one element has remained constant across a variety
of systems: a frame-level classification with a neural network
using multiple hidden layers. One subclass of models is the
so-called “hybrid” system, in which the GMM frame clas-
sifier of the GMM-HMM system is replaced with a DNN.
Within this subclass, there have notable attempts in under-
standing how these systems improve recognition. [3] com-
pared DNN-HMM to GMM-HMM systems by comparing
DNN models to GMMs on phone error rate, noise robust-
ness, and speaking rate, and concluded that DNNs are likely
better frame estimators than GMM. A separate attempt – [4]
– measured the ASR performance after each step of MFCC
processing. Recently, [5] showed that hidden units of deeper
layers encoded more specific phonemic information, while
also stripping away seemingly uninformative properties such
as gender. For deep Tandem features, there was an early at-
tempt at comparing depth in [6], comparing frame error rates
of a three-hidden-layer MLP to one with a single layer and its
effect on word error rate in noise-added conditions.

This work adds to this body of literature by trying to un-
derstand if and how neural networks modify the statistical
properties of the models we use for Automatic Speech Recog-
nition. In particular, given that we assume speech to be a
stochastic process with distribution Ptrue(O,W ), and we rep-
resent this random process with a model with distribution
Pmodel(O,W ) ≈ Pmodel(O|W )Pmodel(W ), a natural ques-
tion to ask is how well do our models match the true distribu-
tion. We would like to understand how the model mismatch
– i.e., the difference between Pmodel and Ptrue – affects ASR
performance. Unfortunately, direct access to Ptrue(O,W )
is difficult, so we instead construct synthetic data to match
the conditional independence assumptions of our models, and
measure performance as we break those conditional indepen-
dence assumptions.

We use the resampling process described in [7, 8, 9],
which uses simulation and novel sampling process to gener-
ate pseudo test data that deviate from the HMM in a controlled
fashion. These processes allow us to generate pseudo data
that, at one extreme, agree with all of the model’s assump-
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tions, and at the another extreme, deviate from the model in
exactly the way real data do. In between, we can precisely
control the degree of data/model mismatch. By measuring
recognition performance on this pseudo test data, we are able
to quantify the effect of this controlled data/model resid-
ual on recognition accuracy. The novel sampling process,
called resampling, was adapted from Bradley Efron’s work
on the bootstrap [10, 11]. Segment level resampling creates
pseudo test data by randomly sampling (with replacement)
labeled—using forced alignment—segments from real test
data; the resulting pseudo test data is independent between
the segments and inherits whatever dependence present in the
segments. In this paper we use frame-, state-, and phone-level
resampling. See [7] for a detailed description.

In this work, we explore how Tandem features and depth
of the neural networks used to generate those features affect
the statistical properties of ASR models. While it may seem
a bit parachronistic to explore Tandem features given the near
ubiquitous use of hybrid systems, the similarities between the
two systems – both generate “derived” features based on su-
pervised training on phone-like alignments – may provide
insights into both Tandem and hybrid systems. Moreover,
“deep” Tandem features have been known to improve recog-
nition performance even in hybrid systems (such as in low re-
source settings [12]), so they are worth studying in their own
right.

One additional issue is that since ASR systems are rather
complex, it is not at all obvious how changes to a particular
feature affect downstream processing. Even for a basic ASR
system, a Deep Neural Network (DNN) or Gaussian Mix-
ture Model (GMM) frame classifier estimates the a (pseudo-
)likelihood of a context-dependent triphone for a particular
feature, a temporal model such as a hidden Markov Model
(HMM) generates phone sequence estimates from frame like-
lihoods, a lexicon restricts allowable phone sequences to
those consistent with actual words, and a language model
provides likelihood estimates for sequences of words. Prob-
lems fixed at a feature level may already be fixed later, or may
break a hack used in another part of the system. As a result,
we perform our analysis with just the HMM as a phone loop
without a language model or lexicon constraints, and then for
the entire recognition pipeline. For the HMM phone loop, we
calculate phoneme error rates and marginal phone duration
lengths of the predictions as the test set data moves from
matching the conditional independence assumptions of the
model to more realistic test data. Then we redo this analysis
when we include the language model and lexicon, and also
include word error rate results.

In this work, we would like to answer four questions: 1)
are neural network features more robust to model mismatch
than more standard frame-level features, 2) does depth pro-
vide more robustness to data/model mismatch, 3) how does
the choice of feature affect expected phone duration of pre-
dictions using only the HMM phone loop, and 4) does includ-

ing language model information change the predicted phone
duration length? In brief, the experiments suggest that us-
ing neural network features are quite a bit more robust to
data/model mismatch than MFCCs, and depth provides ad-
ditional robustness to state- and phone-level statistical depen-
dence. Moreover, using neural network features fix poor du-
ration modeling assumptions of the acoustic model. The lan-
guage model fixes also phone duration modeling, while the
MLP features has this benefit without needing to include lex-
icon and language model constraints.

2. EXPERIMENTAL SETUP

2.1. Data and Modeling

We use the spontaneous meeting portion of the ICSI meeting
corpus [13], recorded with near-field microphones. The train-
ing set consists of 23,739 utterances – 20.4 hours – of speech
across 26 speakers. The training set is based on meeting data
used for adaptation in the SRI-ICSI meeting recognizer [14].
Since phone loop recognition is quite fast, the test set is a
disjoint 20 hour set from the ICSI meeting corpus. Since de-
coding using the full recognition system is much slower, we
use a test set comprising 58 minutes of speech, taken from
ICSI meetings portions of the NIST Rich Transcription Eval-
uation Sets 2002 [15], 2004 [16], and 2005 [17]. Resampling
for this latter test set is performed 5 times to determine the
variance in sampling. Previous work [8, 18, 9] use this setup
with an HTK recognizer, and a more complete description of
the setup can be found in [8].

The acoustic models use cross-word triphones and are
estimated using maximum likelihood. Each triphone is a
three-state linear HMM with no skipping, except for the si-
lence phone. The output distribution is a single Gaussian,
since we are not necessarily interested in the best results
but merely those for analysis. Maximum likelihood train-
ing roughly follows the HTK tutorial: monophone models
are estimated from a “flat start”, duplicated to form triphone
models, clustered to 2,500 states and re-estimated. We use
HDecode for decoding with a wide search beam (300) to
avoid search errors. To evaluate recognition accuracy the ref-
erence and the decoded utterances are text normalized before
the NIST tool sclite is used to obtain word error rate (WER).

We use a trigram language model (LM) [14] that was
trained at SRI by interpolating a number of source LMs;
these consisted of webtext and the transcripts of the follow-
ing corpora: Switchboard, meetings (CMU, ICSI, and NIST),
Fisher, Hub4-LM96, and TDT4. We renormalized the lan-
guage model after removing words not present in the training
dictionary. The perplexity of this meeting room LM is around
70 on our test set. To be compatible with the SRI LM, we use
the SRI pronunciation dictionary, which includes two extra
phones compared to the CMU phone set – “puh” and “pum”
– to model hesitations.
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2.2. Features

In this work, we compare MFCC to Tandem [19] features.
The MFCCs are generated by the HTK Front-End, with 13
Mel-cepstral coefficients, including energy, and first and sec-
ond differences. 9 Frames of MFCC features serve as input
to the neural network, which is trained using TNet [20]. The
number of hidden layers for this study range from 1-4, and
we found severely degraded performance using more than 4
hidden layers. Each layer consisted of 1,500 hidden units, as
this produced the best results in initial experiments, and each
hidden unit used a sigmoid non-linearity. The networks were
pretrained [21] before cross-entropy training. The labels were
42 phone targets, generated from alignments using a GMM-
HMM baseline system with 2,500 states and 8 Gaussians per
mixture. Training converged for all neural networks after 13-
15 epochs.

2.3. Metrics and Alignments

Our study tracks three metrics: phone error rate, word error
rate, and phone duration. The reference phone lengths depend
on alignments, which are generated using the same align-
ments used for training of the neural networks. Since align-
ments using different features may differ by 10% [22], and
using the same alignment for both training and test may bias
results in favor of MLP-based features, we also performed
a preliminary study on alignment agreement and calculated
frame error using alignments generated from a 8 Gaussian
mixture GMM-HMM system using 3 hidden layer MLP fea-
tures. While we found alignment disagreement to be around
5%, the relative ordering of performance of features did not
change, so for this work we report on only reference phone
lengths generated from MFCC alignments.

In addition to the above caveats, phone durations are gen-
erated from state-level alignments, which are subject to mis-
alignment. In particular, alignments that are unable to lo-
cate particular phones will default to the minimum duration
of three frames, due to structural constraints of the three-state
Bakis phone hidden Markov Models. Figures 1 and 2 show
a large percentage of phones with a duration of 3 frames in
frame-level resampled and original test data, but this mode is
more likely due to alignment error than another effect.

For resampling experiments, extra care must be taken as
lengths of utterances change at the state-, phone-, and word-
level. After test utterances are regenerated under the sampling
framework, we realign the sampled data using an 8 Gaussian
mixture GMM-HMM system with MFCC features and use
those alignments as a reference. We also compared against
alignments using MLP-based features, but found no signifi-
cant difference in results.

3. RESULTS

3.1. HMM Phone Loop

Table 1 shows the phone error rate for MFCC features and
neural network features by depth. When the conditional inde-
pendence assumptions are matched at the frame level, there is
little benefit replacing MFCCs with Tandem features; in fact,
MFCC features outperform MLP based features in all but the
three hidden layer case. Starting with the state-level resam-
pling, however, neural network features significantly outper-
form MFCC features. While the phone error rate degrades as
the data becomes more realistic for all features, MLP-based
features degrade less rapidly.

To understand why there is a significant difference be-
tween frame- and state-level results between the two types
of features, it is instructive to look at Figure 1. At the frame-
level, the expected duration of MFCC features match the du-
rations from the alignment (including the spurious peak at the
minimum phone duration length), but at more realistic sam-
pling levels, the percentage of phones of duration 8 frames or
longer is severely underestimated. In contrast, neural network
features match the longer phone duration lengths more accu-
rately. In some sense, MLP-based features are actually fixing
the poor duration modeling assumptions of phone HMMs.

Among MLP-based classifiers, using two hidden layers
instead of one seems to provide some modest robustness to
data/model mismatch when moving from frame- to state-level
resampling (shown in the bottom portion of Table 1). At more
realistic sampling levels, however, relative degradation seems
to be flat.
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Fig. 1. Reference vs. Model Phone Duration Histograms for different fea-
tures and resampling units using an HMM Phone loop. Word-level resam-
pling results are omitted due to space constraints, but are similar to phone-
level results.

3.2. Full Recognition System with Lexicon and Language
Model

As expected, including language model information substan-
tially improves phone error rate results for all features, as
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MFCC MLP MLP MLP MLP
1HL 2HL 3HL 4HL

frame 15.77 19.74 15.94 13.73 15.88
state 83.83 42.58 33.18 34.34 35.36
phone 86.74 51.60 43.47 42.42 42.11
word 91.43 60.13 54.24 51.30 53.64
original 93.10 61.64 59.56 58.39 58.95

frame/state 431% 116% 108% 150% 122%
state/phone 3.47% 21.2% 31.0% 23.5% 19.1%

Table 1. Phone Error Rate for HMM Phone Loop for different types of

resampled data (top), and relative degradation among different types of fea-

tures (bottom).

shown in Table 2, and better phone recognition correlates well
– but not perfectly – with word recognition results, shown in
Table 3. The result is not terribly surprising, as the lexicon
restricts allowable phone sequences to correspond to actual
words. Moreover, compared to results using only the HMM
phone loop, the system is also more robust to conditional in-
dependence assumption mismatches across all features, and
especially for MFCCs. Figure 2 shows one possible cause:
the underestimates of phones 8 frames or higher has now van-
ished. Including a language model seems to fix the poor du-
ration model of the HMM phone model.

Even though the LM does fix data/model mismatch prob-
lems, MLP features are still more robust than MFCCs, espe-
cially at the state level (shown in the bottom part of Table 2).
Moreover, depth up to three hidden layers seems to improve
this type of robustness to statistical dependence at the state
level. At other sampling levels, relative degradation seems to
be static.
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Fig. 2. Reference vs. Model Phone Duration Histograms for different
features and resampling units using the full recognition system. Word-level
resampling results are omitted due to space constraints, but are similar to
phone-level results.

MFCC MLP MLP MLP MLP
1HL 2HL 3HL 4HL

frame 4.52(.03) 3.02(.01) 2.57(.08) 2.11(.02) 2.28(.02)
state 8.37(.19) 5.02(.10) 3.80(.13) 2.47(.24) 4.20(.08)
phone 15.8(.18) 10.1(.28) 7.00(.16) 5.03(.11) 6.52(.20)
word 30.8(.43) 25.5(.64) 19.6(1.2) 18.9(.35) 19.3(.47)
orig 32.08 27.56 22.57 21.04 21.55
frame/state 85.2% 66.2% 47.9% 17.1% 84.2%
state/phone 88.8% 101% 84.2% 103% 55.2%

Table 2. Phone Error Rate using full recognition system for different types

of resampled data (top), and relative degradation between different types of

features (bottom). Numbers in parentheses refer to standard deviation of

error across 5 runs of resampled data.

MFCC MLP MLP MLP MLP
1HL 2HL 3HL 4HL

frame 1.02(.11) 0.78(.05) 0.86(.05) 0.70(0.0) 0.80(0.0)
state 7.30(.23) 4.46(.21) 3.40(.19) 4.48(.29) 3.92(.18)
phone 20.6(.42) 13.6(.34) 9.52(.19) 9.48(.36) 8.82(.46)
word 37.3(.82) 31.3(.68) 25.4(0.26) 21.9(.11) 21.8(.62)
orig 44.6 40.0 32.6 31.6 31.8
frame/state 616% 472% 295% 540% 390%
state/phone 182% 205% 180% 111% 125%

Table 3. Word Error Rate using full recognition system for different types

of resampled data (top), and relative degradation between different types of

features (bottom). Numbers in parentheses refer to standard deviation of

error across 5 runs of resampled data.

4. CONCLUSION

In this work, we track how neural network features improve
ASR systems by testing performance on phone classification
and phone duration modeling in two settings: using only
a HMM phone loop, and full recognition system. More-
over, we compared how neural network features coped with
data/model mismatch by comparing recognition performance
on the original test data to that of data resampled to bet-
ter match the model’s conditional independence assump-
tions. We found that depth improves data/model mismatch
robustness at the state level using the full recognition system.
Moreover, neural network features themselves fix poor phone
duration modeling assumptions of the hidden Markov Model.
These poor modeling assumptions, though, are already fixed
by including the dictionary and language model.

Prima facie, it seems as if duration modeling should be
handled by the HMM phone model, or barring that, the acous-
tic model. That the lexicon and LM, which in and of itself
do not explicitly model phone duration, also fix phone dura-
tions seems especially troubling. We encounter these prob-
lems when we tune recognizers: we scale language model
scores to account for, among other things, score mismatch
between the acoustic and language models, only to include a
separate word insertion penalty, because increasing language
model scaling factors now results in hypothesized word se-
quences with fewer longer words. That neural network fea-
tures “fix” the phone duration model suggest that other im-
provements in the model remain.
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