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ABSTRACT
Multichannel ASR systems commonly separate speech enhancement,
including localization, beamforming and postfiltering, from acoustic
modeling. Recently, we explored doing multichannel enhancement
jointly with acoustic modeling, where beamforming and frequency
decomposition was folded into one layer of the neural network [1, 2].
In this paper, we explore factoring these operations into separate lay-
ers in the network. Furthermore, we explore using multi-task learning
(MTL) as a proxy for postfiltering, where we train the network to
predict “clean” features as well as context-dependent states. We find
that with the factored architecture, we can achieve a 10% relative
improvement in WER over a single channel and a 5% relative im-
provement over the unfactored model from [1] on a 2,000-hour Voice
Search task. In addition, by incorporating MTL, we can achieve 11%
and 7% relative improvements over single channel and unfactored
multichannel models, respectively.

1. INTRODUCTION

While state-of-the-art speech recognition systems perform reasonably
well in close-talking microphone conditions, performance degrades
in conditions when the microphone is far from the user due to degra-
dation from reverberation and additive noise. To improve recognition,
these systems often use multiple microphones to enhance the speech
signal and reduce the impact of reverberation and noise [3, 4].

Multichannel ASR systems often use separate modules to per-
form recognition. First, microphone array speech enhancement is ap-
plied, typically via localization, beamforming and postfiltering. Then
this enhanced signal is passed to an acoustic model [5, 6]. One widely
used technique is delay-and-sum beamforming [4], in which signals
from different microphones are first aligned in time to adjust for the
propagation delay from the target speaker to each microphone. The
time-aligned signals are then summed to enhance the signal from the
target direction and to attenuate noise coming from other directions.
This “spatial filtering” provides signal enhancement by directional
selectivity, and additional signal enhancement can be obtained from
“spectral filtering”. Commonly used filter optimizations are based
on Minimum Variance Distortionless Response (MVDR) [7, 8] and
multichannel Wiener filtering (MWF) [3].

Instead of having separate modules for multichannel enhance-
ment and acoustic modeling, performing both jointly has shown
benefits, both for Gaussian Mixture Models [9] and more recently for
neural networks [1]. In the latter paper, we trained neural networks
to operate directly on raw multichannel waveforms using a single
layer of multichannel “time convolution” filters [1], each of which
independently filtered each channel of the input and then summed
the outputs in a process analogous to filter-and-sum beamforming.
The filters in this multichannel filterbank learned to do spatial and
spectral filtering jointly.

In multichannel speech recognition systems, multichannel spatial
filtering is often performed separately from single channel feature
extraction. With this in mind, this paper investigates explicitly fac-
torizing these two operations as separate layers in a neural network.
The first layer in our proposed “factored” raw waveform CLDNN
model consists of short-duration multichannel time convolution filters
which map multichannel inputs down to a single channel, with the
idea that the network might learn to do broadband spatial filtering in
this layer. By learning several filters in this “spatial filtering layer”,
we hypothesize that the network can learn filters for multiple different
look directions in space. The single channel waveform output of each
filter in this spatial filtering layer is passed to a longer-duration time
convolution “spectral filtering layer” intended to perform finer fre-
quency resolution spectral decomposition analogous to a time-domain
auditory filterbank as in [10]. The output of this spectral filtering
layer is passed to a convolutional, long short-term memory, deep
neural network (CLDNN) acoustic model [11].

It is common to apply a nonlinear postfilter to further enahance
the linear beamformer output [12]. There have been numerous tech-
niques studied to do speech enhancement with neural networks, in-
cluding auto-encoders [13], time-frequency masking [14], and multi-
task learning (MTL) [15]. We explore MTL as a form of regulariza-
tion because it does not increase the number of operations performed
during decoding. We modify the network architecture described
above to contain two outputs, one which predicts context-dependent
states and another which predicts clean log-mel features. Gradients
from these layers are weighted appropriately. In this work, we explore
whether MTL can improve performance on top of the improvements
obtained from the factored multichannel processing in the network.

2. FACTORED NETWORK ARCHITECTURE

The proposed multichannel raw waveform network mimics filter-and-
sum beamforming, a generalization of delay-and-sum beamforming
which filters the signal from each microphone using a finite impulse
response (FIR) filter and then sums them. Using similar notation to
[9], filter-and-sum enhancement can be written as follows:

y[t] =

C−1∑
c=0

N−1∑
n=0

hc[n]xc[t− n− τc] (1)

where hc[n] is the nth tap of the filter associated with microphone
c, xc[t], is the signal received by microphone c at time t, τc is the
steering delay induced in the signal received by a microphone to align
it to the other array channels, and y[t] is the output signal generated
by the processing. C is the number of microphones in the array and
N is the length of the FIR filters.
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2.1. Multichannel Raw Waveform Filterbank

Enhancement algorithms optimizing the model in Equation 1 require
an estimate of the steering delay τc obtained from a separate localiza-
tion model and will obtain filter parameters by optimizing an objective
such as MVDR. In contrast, our aim is to exploit the spatial filtering
capabilities of a multichannel filter without explicitly estimating a
steering delay and to do so by directly optimizing acoustic modeling
performance. Different steering delays can be modeled using a bank
of P fixed filters. The output of filter p ∈ P can be written as follows:

yp[t] =

C−1∑
c=0

N−1∑
n=0

hp
c [n]xc[t− n] (2)

where the steering delay for each microphone is implicitly absorbed
into the filter parameters hp

c [n].
[2, 1] learned such filters within a neural network, where the

first layer modeled Equation 2 and performed multichannel time-
convolution with a FIR filterbank hc = {h1

c , h
2
c , . . . h

P
c } where hc ∈

<N×P for c ∈ 1, . . . C. The output after the convolution was then
max-pooled across time to give a degree of short term shift invariance,
and then passed through a compressive non-linearity. As shown in
[1], the time convolution layer learned to do both spatial and spectral
filtering. The output of the time convolution layer was passed to a
CLDNN [11] and the whole network was trained jointly.

2.2. Factored Multichannel Filterbank

In our proposed network, shown in Figure 1, we factor out spatial
and spectral filtering into separate layers. The motivation for this
architecture is to design the first layer to be spatially selective, while
implementing a frequency decomposition shared across all spatial
filters in the second layer. Thus the combined output of the second
layer will be the Cartesian product of all spatial and spectral filters.

The first layer, denoted by tConv1 in the figure, again mod-
els Equation 2 and performs a multichannel time-convolution with
a FIR spatial filterbank. First, we take a small window of the
raw waveform of length M samples for each channel C, denoted
as {x1[t], x2[t], . . . , xC [t]} for t ∈ 1, · · · ,M . Each channel c
is convolved by a filter with N taps, and there are P such filters
hc = {h1

c , h
2
c , . . . , h

P
c }. We stride the convolutional filter by 1 in

time across M samples and perform a “same” convolution, such that
the output for each convolutional filter remains length M . Finally,
the outputs from each channel are summed to create an output feature
of size yp[t] ∈ <M×1×P where the dimensions correspond to time
(sample index), frequency (spatial filter index), and look direction
(feature map index), respectively.

The operation of each filter p ∈ P can again be interpreted as
a filter-and-sum beamformer, except it does not first shift the signal
in each channel by an estimated time delay of arrival (TDOA). The
main differences between the multichannel approach in [1] and the
proposed factored approach are as follows. First, both the filter size
N and number of filters P are much smaller in order to encourage
the network to learn filters with a broadband response in frequency
that span a small number of spatial look directions needed to cover all
possible target speaker locations. We will show that the shorter filters
in this layer will have worse frequency resolution than those in [1], but
that will be dealt with in the next layer. In addition, instead of doing
a convolution so the output of the convolution has fewer samples
than the input, we perform a “same” convolution so the length of the
output matches the input. In addition, this linear filter is not followed
by any non-linear compression (i.e. ReLU, log). Finally, we do not
perform any pooling on the output of this layer. We hope that this will

encourage the network to use this layer to perform spatial filtering
only with a limited spectral response.

The second time-convolution layer, denoted by tConv2 in the
figure, consists of longer-duration single-channel filters. It therefore
can learn a decomposition with better frequency resolution than the
first layer but is incapable of doing any spatial filtering. Given the
P feature maps from the first layer, we perform a time convolution
on each of these signals, very similar to the single-channel time-
convolution layer described in [10], except that the time convolution
is shared across all P feature maps or “look directions”. We denote
this layer’s filters as g ∈ <L×F×1, where 1 indicates sharing across
the P input feature maps. The “valid” convolution produces an output
w[t] ∈ <M−L+1×F×P . Next, we pool the filterbank output in time
thereby discarding short-time (i.e. phase) information, over the entire
time length of the output signal, to produce an output of dimension
1× F × P . Finally, we apply a rectified non-linearity, followed by a
stabilized logarithm compression1, to produce a frame-level feature
vector at time t, i.e. xt ∈ <1×F×P . We then shift the window of the
raw waveform by a small (10ms) hop and repeat this time convolution
to produce a set of time-frequency-direction frames at 10ms intervals.

Fig. 1: Factored multichannel raw waveform CLDNN architecture
for P look directions. The figure shows two channels for simplicity.

The output out of the time convolutional layer (tConv2) pro-
duces a frame-level feature, denoted as z[t] ∈ <1×F×P . This feature
is then passed to the CLDNN block of Figure 1. First, the fConv
layer applies frequency convolution to z[t]. This layer has 256 filters
of size 1× 8× 1 in time-frequency-direction. Our pooling strategy is
to use non-overlapping max pooling along frequency, with a pooling
size of 3 [16]. The output of the frequency convolution layer is then
passed to a 256-dimensional linear low-rank layer. The output of this

1We use a small additive offset to truncate the output range and avoid
numerical problems with very small inputs: log(·+ 0.01).
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is passed to 3 LSTM layers with 832 cells and a 512 unit projection
layer, and then one DNN layer with 1,024 hidden units. More details
about the CLDNN architecture can be found in [10, 11].

The time convolution layers are trained jointly with the rest of
the CLDNN. During training, the raw waveform CLDNN is unrolled
for 20 time steps for training with truncated backpropagation through
time. In addition, the output state label is delayed by 5 frames, as
we have observed that information about future frames improves the
prediction of the current frame [11].

2.3. Multi-task Learning

To further improve noise robustness, we apply MTL by configur-
ing the network to have two outputs, one which predicts context-
dependent (CD) states and the other “denoising” output which pre-
dicts clean features, similar to [15]. The latter output is only used
during training to regularize the remaining network parameters; the
denoising output and associated layers are not evaluated during in-
ference. One novel aspect of our work is that we explore MTL in a
multichannel setting.

The additional denoising layers are shown in the MTL block of
Figure 1. In this example, we have shown the denoising subnetwork
branching off of the first LSTM layer, though we also explore having
this branch at different parts of the network to see if performance can
be improved by performing denoising closer to the input. The MTL
module is composed of two DNN layers followed by a linear low-
rank layer to predict clean log-mel features. We do not predict the
clean waveform since it contains extra fine time structure detail that is
irrelevant to the recognition task and would therfore be more difficult
to optimize. During training the gradients backpropagated from the
CD and MTL outputs are weighted by α and 1− α respectively.

3. EXPERIMENTAL DETAILS

3.1. Data

Our experiments are conducted on about 2,000 hours of noisy train-
ing data consisting of 3 million English utterances. This data set is
created by artificially corrupting clean utterances using a room simu-
lator, adding varying degrees of noise and reverberation. The clean
utterances are anonymized and hand-transcribed voice search queries,
and are representative of Google’s voice search traffic. Noise signals,
which include music and ambient noise sampled from YouTube and
recordings of “daily life” environments, are added to the clean utter-
ances at SNRs ranging from 0 to 20 dB, with an average of about 12
dB. Reverberation is simulated using the image model [17] – room
dimensions and microphone array positions are randomly sampled
from 100 possible room configurations with RT60s ranging from 400
to 900 ms, with an average of about 600 ms. The simulation uses an
8-channel linear microphone array, with inter-microphone spacing
of 2 cm. Both noise and target speaker locations change between
utterances; the distance between the sound source and the microphone
array is chosen between 1 to 4 meters. The speech and noise azimuths
were uniformly sampled from the range of ±45 degrees and ±90
degrees, respectively, for each noisy utterance.

Our evaluation set consists of a separate set of about 30,000 ut-
terances (over 20 hours). The simulated set is created similarly to the
training set under similar SNR and reverberation settings. Care was
taken to ensure that the room configurations, SNR values, T60 times,
and target speaker and noise positions in the evaluation set are not
identical to those in the training set, although the microphone array
geometry between the training and simulated test sets is identical.

3.2. Acoustic model details

The CLDNN architecture and training setup follow a similar recipe
to [1, 10]. The input window size for the raw waveform is 35ms
(M = 560) at a sampling rate of 16kHz. The first layer tConv1
filters are 5ms in length (N = 80), and we have P such filters, which
we vary. The filters are initialized to be an impulse centered at a
delay of zero for channel 0, and offset from zero in channel 1 by
different delays for each filter. This amounts to performing delay-and-
sum filtering across a set of fixed look directions. The second layer
tConv2 follows [1], with F = 128 filters each 25ms (L = 400)
long. This layer is initialized using the Glorot-Bengio strategy [18].

Single channel models are trained using signals from channel 1,
while C = 2 channel models use channels 1 and 8 (14 cm spacing).
All neural networks are trained with the cross-entropy (CE) criterion,
using asynchronous stochastic gradient descent (ASGD) optimiza-
tion [19]. Sequence training experiments also use ASGD [20]. All
networks have 13,522 CD output targets. The weights for the fConv
and DNN layers are initialized with Glorot-Bengio, while the LSTM
layers are randomly sampled from a uniform distribution between
±0.02. We use an exponentially decaying learning rate, which starts
at a value of 0.004 and decays by 0.1 over 15 billion frames.

4. RESULTS

In sections 4.1 and 4.2 we explore the impact of the spatial/spectral
filter factoring. Specifically, we explore the impact of the numer of
look directions and the spatial/spectral response of the filters learned.
Subsequently, in 4.3 we explore how multi-task learning, akin to post
filtering, further enhances the learned filter structure.

4.1. Number of Spatial Filters

We begin by exploring the behavior of the proposed factored multi-
channel architecture as the number of spatial filters P varies. Table 1
shows that we get good improvements up to 10 spatial filters. We did
not explore above 10 filters due to the computational complexities of
passing 10 feature maps to the tConv2 layer. The factored network,
with 10 spatial filters, achieves a WER of 20.4%, a 6% relative im-
provement over the baseline 2 channel multichannel raw-waveform
CLDNN from [1]. It is important to note that since the tConv2 layer
is shared across all look directions P , the total number of parameters
is actually less than the architecture in [1].

# Spatial Filters P WER

baseline 2 ch, raw [1] 21.8

1 23.6
3 21.6
5 20.9

10 20.4

Table 1: WER when varying the size of tConv1, 2 channel input.

4.2. Filter Analysis

To better understand what the tConv1 layer learns, Figure 2 plots
two-channel filter coefficients and the corresponding spatial re-
sponses, or beampatterns, after training. The beampatterns show the
magnitude response in dB as a function of frequency and direction of
arrival, i.e. each horizontal slice of the beampattern corresponds to
the filter’s magnitude response for a signal coming from a particular
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direction. In each frequency band (vertical slice), lighter shades
indicate sounds from those angles are passed through, while darker
shades indicate directions whose energy is attenuated.

Despite the intution described in Section 2.2, the first layer filters
appear to perform both spatial and spectral filtering. However, the
beampatterns can nevertheless be categorized into a few broad classes.
For example, filters 2, 3, 5, 7, and 9 in Figure 2 only pass through
some low frequency subbands below about 1.5 kHz, where most
vowel energy occurs, but steered to have nulls in different directions.
Very little spatial filtering is done in high-frequency regions, where
many fricatives and stops occur. The low frequencies are most useful
for localization because they are not subject to spatial aliasing and
because they contain much of the energy in the speech signal; perhaps
that is why the network exhibits this structure.
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Fig. 2: Trained filters and spatial responses for 10 spatial directions.

To further understand the benefit of the spatial and spectral filter-
ing in tConv1, we enforce this layer to only perform spatial filtering
by initializing the filters as described in Section 3.2 and not training
the layer. Table 2 compares performance when fixing vs. training
the tConv1 layer. The results demonstrate that learning the filter
parameters, and therefore performing some spectral decomposition,
improves performance over keeping this layer fixed.

# Spatial Filters P tConv1 Layer WER

5 fixed 21.9
5 trained 20.9

Table 2: WER for training vs. fixing the tConv1 layer, 2 channel.

4.3. Multi-task Learning

Our first MTL experiment is to analyze where to branch the denoising
MTL layers. For these experiments, we found the optimal weight (in
terms of minimizing WER) on the CE term, α, to be 0.9, similar
to [15]. Since the unfactored model in [1] is faster to train than the
factored model (since it does not contain a second time convolution
layer over P feature maps), we do our initial analysis using the
unfactored model. The results are shown in Table 3. We find that
it is best to put the MTL layers at the upper parts of the network,
either after the first LSTM or the DNN layers in the CLDNN. The
jump in performance in moving the MTL from fConv to 1LSTM
indicates that the lower layers of the network, which we know are
good at reducing variations due to noise [21], benefit more from MTL

compared to the upper layers of the network. Furthermore, notice that
for 2 channels, MTL provides a 3-5% relative improvement over the
“no MTL” baseline, demonstrating the benefit of this enhancement
scheme even when processing multiple channels. Based on these
results we place the MTL branch after the first LSTM layer in the
remaining factored multichannel experiments.

Denoising task branching layer 1 channel 2 channel

no MTL [1] 23.5 21.8
tConv 23.2 21.7
fConv 23.2 21.8

1LSTM 22.6 20.7
DNN 22.6 20.7

Table 3: WER when multi-task training the unfactored model [1].

4.4. Sequence Training

Table 4 shows the WER of the factored model with MTL for P = 10
spatial filters after both CE and sequence training. We compare the
proposed factored model to a set of baselines, including (1) single
channel log-mel, (2) single channel raw waveform, (3) delay-and-sum
beamforming on 8 channel input given oracle knowledge of the true
TDOA, (4) MVDR beamforming on 8 channel input where both the
true TDOA and noise/speech covariance matrices are known, and (5)
the 2 channel unfactored raw waveform approach from [1].

After sequence training, the factored model shows a 5% relative
improvement over the model from [1], while incorporating MTL gives
a 7% relative improvement. Finally, factored raw + MTL offers a 9%
relative improvement over commonly used beamforming techniques.

Method CE Seq

log-mel, 1 channel 25.2 20.7
raw, 1 channel 23.5 19.2

delay-and-sum, 8 channel 22.4 18.8
MVDR, 8 channel 22.4 18.7

unfactored raw, 2 channel [1] 21.8 18.2

factored raw, 2 channel 20.4 17.3
factored raw, 2 channel, MTL 20.0 17.0

Table 4: WER after Sequence Training.

5. CONCLUSIONS

We have presented a factored multichannel raw waveform CLDNN
architecture, which explicitly factors “spatial” and “spectral” filtering
as separate layers in the network. Analysis of our learned filters
show that the “spatial” filter layer learns filters which are selective
in frequency as well as space. Furthermore, we incorporated MTL
as a postfilter. Overall, the proposed factored model + MTL yields
between a 7-9% relative improvement in WER over the unfactored
model [1] and commonly used beamforming techniques. One of the
limitations of the algorithm is that the look directions are factored
explicitly and thus fixed for test, and future work will look at learning
a filter adaptively for each input.
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