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ABSTRACT

A recent trend in normalization of factors extraneous to a
speech recognition task has been to explicitly introduce fea-
tures related to the unwanted variability in the training of
Deep Neural Networks (DNN). Typically, this is done by ei-
ther perturbing the training set with models of these extra-
neous factors such as vocal tract length and environmental
noise or augmenting the conventional spectral features with
auxiliary information such as i-vector, noise spectrum, etc.
Another emerging approach is to derive low dimensional rep-
resentations of the factors from the hidden layers of DNN and
use it for normalization of the acoustic model. Almost all of
these approaches focus on either speaker or environment nor-
malization. In this paper we propose a novel approach for
estimating a compact joint representation of speakers and en-
vironment by training a DNN, with a bottleneck layer, to clas-
sify the i-vector features into speaker and environment labels
by Multi-Task Learning (MTL). Another novelty is to learn
this compact representation while learning to map the i-vector
of a noisy utterance into its corresponding clean speaker i-
vector and noise-only i-vector. Experiments were conducted
on an artificially noise-corrupted version of the WSJ corpus.
The proposed compact joint speaker-environment representa-
tions show promising gains.

Index Terms— i-vector, deep neural network, speaker
adaptation, multi-task learning, noise robustness

1. INTRODUCTION

Over the past decade, there have been tremendous advances
in the accuracy of large vocabulary speech recognition sys-
tems. Even though this is largely driven by the amount of
training data and increase in computational capabilities, the
performance improvements are largely limited to clean and
moderately noisy test conditions. Recently, there has been
a lot of focus on normalization of speaker and environment
variability in DNN-based acoustic modeling. fMLLR is an

effective feature-transform-based approach for speaker adap-
tation [1]. Speaker adaptation of DNNs by training a hidden
layer as a discriminative feature transform [2] and Cluster
Adaptive Training [3] are structured-model-based methods.
Multi-condition training and data augmentation [4] are state
of the art methods where the training set incorporates pos-
sible acoustic factors that can be encountered in the testing
scenario. Another strategy for normalization is to augment
the DNN input with auxiliary features that carry speaker and
environment information [5, 6, 7]. Effectiveness of the last
approach lies in finding good speaker and environment repre-
sentations.

This paper focuses on deriving a joint representation of
speaker and environment that can be used to augment the
DNN input. Typically, stacked spectral features are used to
train a DNN with a bottleneck layer, where the output of the
bottleneck layer is used as the speaker representation [8, 9].
Since the speaker-specific information is not represented in
short-term spectral features, a super vector derived from the
phonetic clustering of bottleneck features is examined in [10].
In this paper we use i-vectors, instead of stacked short-term
spectral vectors, as input to train a DNN that estimates the
Joint Speaker and Environment Representation (JSER) . We
explore three forms of JSER: firstly by trying to predict the
clean speaker i-vector and pure noise i-vector from the noisy
utterance i-vector, which is inspired by the i-vector factoriza-
tion approach [11]; secondly, using MTL to train the JSER-
DNN with speaker and environment labels; and finally, the
JSER-DNN is trained to predict the joint speaker-noise label.

2. SPEAKER AND ENVIRONMENT
NORMALIZATION OF DNN

Our goal is to extract a low dimensional representation of
speaker and environment and augment this feature with
acoustic features at the input of a DNN acoustic model. The
speaker and environment representations are typically de-
rived from the signal using spectral information [7] or using
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Fig. 1. Speaker and environment normalization of the DNN
acoustic model.

statistical methods such as i-vector [5]. i-vector is a low di-
mensional representation of the acoustic variability related to
speakers, environment, dialects, etc., rather than the phonetic
variability [12]. Given a Gaussian Mixture Model (GMM),
the corresponding speaker-specific mean super-vector M(s),
for speaker s, can be approximated as

M(s) = m+ Tw(s) (1)

where m is the mean super-vector from the GMM-UBM, T
is the low-rank total variability matrix and w(s) is the low-
dimensional i-vector for speaker s [13].

In [14] the authors have shown that using a DNN to trans-
form i-vectors before adding them to acoustic features can
bring further improvement. In this paper we take a similar ap-
proach where i-vectors are discriminatively transformed be-
fore being augmented to the acoustic features. The following
section explains the proposed method in detail.

3. PROPOSED DISCRIMINATIVE JOINT
SPEAKER-ENVIRONMENT REPRESENTATION

Figure 1 shows the approach we adopt for speaker and envi-
ronment normalization of the DNN acoustic model. Effec-
tiveness of the normalization approach in Figure 1 depends
on the quality of the speaker and environment representa-
tion. It is desirable that the representation can discriminate
speakers and environment reliably. By blending the concepts
of MTL [15, 16] and deep auto-encoder [17], we examine
three different forms of Joint Speaker-Environment Represen-
tation (JSER). Figure 2 depicts the architecture of the pro-
posed methods. Multi-task learning is an approach that aims
at improving the performance on multiple tasks by jointly
learning classifiers for multiple tasks. Usually better repre-
sentation and common knowledge among different tasks are

learned, hence it achieves higher classification accuracy than
single task learning. MTL-DNN is proposed to address the
multi-label classification problem in [18], where an instance
may have multiple labels and the goal is to figure out all the
labels of an unseen instance.

3.1. MTL-MSE-JSER: Predicting speaker and noise i-
vectors

In [11], factorizing i-vectors carrying information about both
speaker and environment factors into separate speaker i-
vectors and noise i-vectors was shown to give better general-
ization for unseen environments. In the proposed method we
train a transform to learn the mapping from noisy utterance
i-vectors to clean speaker i-vectors and pure noise i-vectors.
For the transform we use an MTL-DNN with a bottleneck
layer as shown in figure 2(a). The MTL-DNN with linear
output layers is trained to minimize the Mean Squared Error
(MSE) between the target i-vectors and predicted i-vectors.
This method can also be viewed as a method to enhance or
de-noise noisy i-vectors. The low dimensional bottleneck
layer encodes discriminative information about the target
tasks [17].

3.2. MTL-CE-JSER: Predicting speaker and noise labels

The i-vector feature carries acoustic variability related to
the speaker and the environment in which the utterance is
recorded. Instead of using clean speaker and pure noise i-
vectors as targets, in this method we train an MTL-DNN
to classify the noisy i-vector to predict speaker and noise
labels. As shown in figure 2(b), this is essentially an i-vector-
based classifier for speakers and noise, where the MTL-DNN
with softmax output layers is trained to minimize the cross-
entropy between the target labels and the predicted labels. By
choosing noise classification as an auxiliary task, the feature
encoding in the bottleneck layer is discriminatively trained to
represent both speakers and noise.

3.3. JTL-CE-JSER: Predicting joint speaker-noise labels

In the final method, as shown in figure 2(c), we train a DNN
to predict the joint speaker-noise labels from the noisy utter-
ance i-vector. There are S × N target classes, where S is
the number of speakers and N is the number of environment
types in the training data. The DNN has a single softmax out-
put layer and the objective function is cross-entropy between
target labels and predicted labels. Joint Task Learning (JTL)
could be harder than MTL because the classifier has to learn
all possible combinations of speakers and noise presented in
the training set.

4. EXPERIMENTS

Experiments were conducted on a corrupted WSJ database.
We used the 84 speaker WSJ0 subset for training the acoustic
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Fig. 2. Discriminatively trained low dimensional subspace from noisy utterance i-vectors. (a) MTL-MSE-JSER: Learning the
mapping from noisy utterance i-vectors to corresponding speaker and noise i-vectors by MTL. (b) MTL-CE-JSER: Training a
classifier to predict speaker and noise labels from noisy utterance i-vectors by MTL. (c) JTL-CE-JSER: Training a classifier to
predict the joint speaker and noise labels from noisy utterance i-vectors.

model and both WSJ0 and WSJ1 for training the JSER trans-
forms. To simulate the background noise, 8 different types
of noise (restaurant, street, supermarket, food-court, living
room, mall, taxi and gym) were added to the clean wave-
forms at different SNRs. Each noise recording was about
half an hour long. Each clean waveform in the training set
was mixed with a random noise segment equal to the duration
of the waveform. We created two different noise corrupted
databases, one for i-vector extraction and one for acoustic
model training. Trained models were evaluated on corrupted
eval92, dev93 and eval93 5K closed vocabulary test sets. The
same 8 noise types at random SNRs between 5 dB and 20 dB
were added to the clean test sets. A trigram language model
was used in decoding.

4.1. Speaker and noise i-vector extraction

For every noise type we corrupted the WSJ0 and WSJ1 train-
ing set produced by 283 speakers, at 8 different SNRs, from 5
dB to 20 dB in steps of 2 dB. This resulted in a noisy database
that is 64 times the size of clean database. Gender dependent
UBM-GMMs with 2048 mixture components were trained on
this set. UBMs were trained on 13 MFCC coefficients ap-
pended with delta and delta-delta coefficients. The features
were normalized to zero mean and unit variance over each
utterance. Utterance i-vectors and speaker i-vectors were ex-
tracted using all the utterances. For the noise model, a UBM-
GMM with 512 mixture components was trained. For com-
puting the pure noise i-vectors, the long noise recordings were
randomly segmented into many 20-second chunks and MFCC

features were extracted. Using the noise and speaker labels
for each utterance i, we got triplets of {w(i), w(si), w(ni)}
and {w(i), si, ni} where w(i) is the utterance i-vector, w(si)
is the speaker i-vector, w(ni) is the pure noise i-vector, si is
the speaker label and ni is the noise label. These features
were used for training the JSER-DNNs as shown in figure 2.

4.2. Training speaker and environment representations

Figure 2 shows the topology of JSER-DNNs. The DNNs dif-
fer only in the design of the output layer and the number of
nodes in the linear bottleneck layer. We fixed the dimension-
ality of the input noisy utterance i-vectors at 100, that of clean
speaker i-vectors at 50 and of pure noise i-vectors at 10. For
the MTL-CE-JSER, there are 283 speaker labels and 8 noise
labels and for the JTL-CE-JSER there are 283 × 8 = 2264
output nodes. Note that JSER-DNNs only need utterance-
level features (i.e., noisy i-vectors), which implies the amount
of training data is significantly less compared to many other
models that use frame-level input, such as spectral and MFCC
features [8, 9]. Table 1 gives the performance of JSER-DNNs
in terms of MSE and classification accuracy for speakers and
noise. We use 3% of the data set for cross-validation. The
DNN is initialized using the RBM pre-training method [17]
and fine-tuned using back-propagation. It can be seen that the
JSER-DNNs are able to classify the speakers and environment
types with high accuracy from noisy i-vector features. We
hypothesize that activations of the bottleneck layer of a well
trained JSER-DNN encode discriminative information about
speaker and environment factors.
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Speaker Environment
Multi-Task Learning Train CV Train CV

MTL-MSE-JSER (60) 0.0501 0.0633 0.0931 0.1337
MTL-CE-JSER (60) 99.28 97.39 93.94 89.50

Spk.× Env.
Joint-Task Learning Train CV
JTL-CE-JSER (60) 93.02 80.62

Table 1. Speaker and noise classification performance of
JSER-DNNs. For MTL-MSE-JSER, the numbers are MSE
values and for the rest they are classification accuracies in
percentage. The number in brackets is the dimensionality of
the bottleneck layer.

4.3. DNN acoustic model

To train the DNN acoustic model, a WSJ0 subset with 84
speakers is corrupted with all 8 noise types at random SNRs
between 10 dB and 20 dB to create a multi-condition training
set. Including clean condition, this results in 9 environment
conditions. The corrupted training set has the same distri-
bution of environment conditions for every speaker and has
the same size as the original clean training set. Note that
training and test sets have the same noise types but differ-
ent SNR ranges. Since the pure noise recordings are much
longer than the clean waveforms, it is highly unlikely to en-
counter the same noise segment in training and test sets. 13
MFCC, delta and delta-delta features normalized by mean and
variance over the utterance are computed. 11 frames of tem-
poral context were used at the input of DNN with the topol-
ogy shown in figure 1. The tied-state labels are obtained
from an MMI trained GMM-HMM. DNN is initialized us-
ing RBM pre-training method [17] and fine-tuned using back-
propagation. DNN acoustic modelling is performed using the
Kaldi toolkit [19].

4.4. ASR results with normalization

Table 2 presents the word error rates (WER) of various sys-
tems on all test sets. Multi-condition DNN does not have any
speaker and noise normalization. Utterance i-vector is ap-
pended to the baseline features to create the baseline speaker
and environment system. The reason for using utterance-
level i-vector adaptation instead of speaker-level adaptation
is because under our corrupted WSJ experiment settings, it
is found that speaker-level i-vector adaptation has worse per-
formance. This may be due to the difference in distribution
of noises and SNRs per speaker in training and test sets. We
found that 25-dimensional i-vectors can provide better per-
formance than 100-dimensional i-vectors in adaptation. This
is consistent with the findings in [6]. As shown in the table,
MTL-MSE-JSER outperforms the 100-dimensional baseline
and the multi-condition baseline (without adaptation) in all
three test sets. MTL-CE-JSER is even better on dev93 and

dev93 eval92 eval93
multi-condition 14.08 8.31 11.14

i-vector (25) 13.90 7.73 11.40
i-vector (100) 14.38 8.09 11.22

MTL-MSE-JSER (60) 13.72 8.07 11.06
MTL-CE-JSER (60) 13.34 8.37 9.89
JTL-CE-JSER (60) 15.36 9.47 11.89

Table 2. Word error rates for various speaker and environ-
ment representations. The number in brackets is the dimen-
sionality of the representation.

eval93. Although the 25-dimensional baseline has a better
result on the eval92 set than all others, MTL-CE-JSER has
much better WERs on dev93 and eval93, and therefore be-
comes the best in terms of the averaged WER of 10.53% on
three test sets, whereas the 25-dimensional baseline has the
averaged WER of 11.01%. JTL-CE-JSER causes degrada-
tion on all test sets. It may be due to the fact that it could be
hard for the JTL-DNN to learn all combinations of speaker
and noise labels present in the training set, and as seen in
Table 1, the accuracy on the CV set is much worse than the
one on training set, whereas MTL-CE-JSER seems to learn
better according to its high accuracy on CV for both tasks.
We experimented with dimensionality of the proposed repre-
sentations, but observed that even though the frame accuracy
of the DNN acoustic model was better on training and cross-
validation sets, it did not translate into better word error rates.

5. CONCLUSIONS AND FUTURE WORK

We presented three novel methods for training discrimina-
tive joint speaker-environment representations from i-vectors.
Firstly, we investigated multi-task learning to learn the repre-
sentations. An MTL-DNN is trained to learn the mapping
from noisy utterance i-vectors to clean speaker i-vectors and
pure noise i-vectors. Secondly, an MTL-DNN for predict-
ing speaker and noise labels from the noisy i-vector input is
trained. Finally, a DNN is trained to predict the joint speaker-
noise labels. All DNNs have a linear bottleneck layer. The
proposed joint speaker-noise representations are the activa-
tion of the linear bottleneck layer. Except the JTL-CE-JSER,
appending these representations as an additional feature at the
input of the DNN acoustic model for speaker and environment
normalization was found to be promising. In future we will
explore additional auxiliary tasks relevant to multi-task learn-
ing, test on larger tasks and explore its application to noise
robust speaker verification.
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