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ABSTRACT

Recently, there has been an increasing interest in end-to-end speech
recognition using neural networks, with no reliance on hidden
Markov models (HMMs) for sequence modelling as in the standard
hybrid framework. The recurrent neural network (RNN) encoder-
decoder is such a model, performing sequence to sequence mapping
without any predefined alignment. This model first transforms the
input sequence into a fixed length vector representation, from which
the decoder recovers the output sequence. In this paper, we extend
our previous work on this model for large vocabulary end-to-end
speech recognition. We first present a more effective stochastic gra-
dient decent (SGD) learning rate schedule that can significantly im-
prove the recognition accuracy. We then extend the decoder with
long memory by introducing another recurrent layer that performs
implicit language modelling. Finally, we demonstrate that using
multiple recurrent layers in the encoder can reduce the word error
rate. Our experiments were carried out on the Switchboard cor-
pus using a training set of around 300 hours of transcribed audio
data, and we have achieved significantly higher recognition accu-
racy, thereby reduced the gap compared to the hybrid baseline.
Index Terms: end-to-end speech recognition, deep neural networks,
recurrent neural networks, encoder-decoder.

1. INTRODUCTION

The neural network/hidden Markov model (NN/HMM) hybrid ap-
proaches have redefined state-of-the-art speech recognition [1, 2, 3].
In this framework, a neural network is used to estimate the poste-
rior probabilities of HMM states, while the main sequential mod-
elling is carried out by the HMM, incorporating context-dependent
phone models, pronunciation models, and language models (LMs).
The past few years have seen significant advancements in speech
recognition based on this hybrid architecture including using differ-
ent neural network architectures [4, 5, 6], sequence training [7, 8, 9]
and speaker adaptation [10, 11, 12]. However, there has been rel-
atively little focus on the fundamentals of the hybrid architecture.
The main advantage of the hybrid approach is that it factorizes the
speech recognition problem into several relatively independent sub-
tasks based on a few assumptions and approximations; each mod-
ule deals with only one of the sub-tasks, thus simplifying the objec-
tive. For instance, using neural networks to classify each acoustic
frame into one of the HMM states based on the conditional indepen-
dence assumption is much simpler compared to classifying a set of
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variable length sequences directly. However, the cost of this divide-
and-conquer strategy is that it is difficult to optimise all the modules
jointly.

Recently, there has been an increasing interest in end-to-end
speech recognition using neural networks without using HMM se-
quence modelling. One approach is based on the connectionist tem-
poral classifier (CTC) that uses a recurrent neural network (RNN) for
feature extraction [13], and competitive results have been achieved
on a few tasks [14, 15, 16, 17]. CTC does not rely on a prior align-
ment between input and output sequences, but integrates over all
possible alignments during the model training. The alignment is
computed by the forward-backward algorithm as part of the model
training. The key difference compared to HMMs is that the out-
put labels can be letters or phonemes instead of the HMM states,
and it introduces the blank label to discard those frames that are
not informative or are noisy when computing the optimal output se-
quence. However, similar to HMMs, CTC still predicts labels for
every frame, and relies on the conditional independence assumption.

Another approach is based on the RNN encoder-decoder which
was firstly proposed for machine translation [18, 19], and has
been applied to image captioning [20], as well as speech recogni-
tion [21, 22, 23, 24]. This model transforms the input sequence of
variable length into a fixed dimensional vector representation us-
ing the RNN encoder, and the RNN decoder recovers the output
sequence from this vector representation. Unlike CTC, this model
does not require the alignments between the input and output to-
kens, and it does not rely on the conditional independence assump-
tion. This model has achieved competitive phoneme recognition ac-
curacy on the TIMIT database [21], and word recognition accuracy
on WSJ [23]. Recently, Chan et al [24] obtained good results on the
large scale Google Voice Search task. Previously, we investigated
this approach for large vocabulary speech recognition on the Switch-
board corpus [22], where we focused on architectural and speedup
issues for this model. In this paper, we present training strategies that
can significantly reduce the word error rate (WER). In particular, we
show that improved scheduling of the SGD learning rates can signif-
icantly improve the recognition accuracy, and extending the memory
of the RNN decoder can further reduce the WER. Finally, using mul-
tiple recurrent layers in the encoder can result in a higher recognition
accuracy.

2. RNN ENCODER-DECODER WITH ATTENTION

2.1. The model

For sequence to sequence learning, the RNN encoder-decoder di-
rectly computes the conditional probability of the output sequence
given the input sequence without assuming a fixed alignment. The
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key idea is to introduce the context vector obtained from the RNN
encoder as a representation of the input sequence, so that the condi-
tional probability can be approximated as

O
P(ylu"'vyo‘xla"'aXT) ~ Hp(y0|y17"',y0*1700)‘ (1)
o=1

Note that the context vector c, (cf. section 2.2) is updated for each
output token y,. For speech recognition, {X1,...,xr} is usually a
sequence of acoustic feature vectors, while {y1,...,yo} is usually
a sequence of class indices corresponding to the output units such as
phonemes, letters, or words, etc. In the decoder, the posterior proba-
bility of y, is computed using the softmax function after a recurrent
hidden layer which takes both the embedding vector of the previous
token y,—1 and the current context vector c, as inputs, i.e.

7y0*17C0) = g(SO7C0) (2)
So = f(YD717sofl7co)7 (3)

P(yolyr, - ..

where g denotes the softmax function, and f refers to the recur-
rent function; y,—1 is a continuous representation of ¥,_1, which
is obtained from an embedding matrix. The recurrent layer in the
decoder performs implicit language modelling, which explains why
the encoder-decoder can work reasonably well without any language
model. The function of the recurrent hidden state s, is to remember
the current decoding state, and fuse the information from y,—; and
Co. As shown in section 2.2, s, is also used to compute the attention
weights for the context vector. In Eq. (2), it is possible to remove ¢,
from the inputs, however, we obtained lower recognition accuracy
in our preliminary experiments (results are not given in this paper),
indicating that s, cannot capture all the information from c, by one
recurrent hidden layer.

2.2. Attention-based scheme

For the encoder-decoder, it is possible to use a global fixed con-
text vector ¢ in Eq. (1) as in the machine translation task [25, 18].
However, for long input sequences as in speech recognition, this ap-
proach usually does not work, especially when the dimension of ¢
is relatively small. The more effective approach is to dynamically
compute the context vector ¢, given the current decoding state s, by
the attention-based scheme [19]. More precisely, c, is obtained as

Co = Z aothy 4
t

where oot is the attention weight with the constraint as aot € [0, 1]
and ), aor = 1. hy denote the hidden state of the encoder RNN
which transforms the input feature as

h; = f(x¢, he—1) &)
In this paper, we always use the bidirectional RNN [26] in the en-
coder, and we tge;,n ioncatenate the forward and backward hidden
state as h; = (ht7 ht). Since the conventional RNN only has lim-
ited power to capture the sequential information due to the vanish-
ing gradient problem, in this work, we use the gated recurrent units
(GRU) [18] in all the recurrent layers.

In Eq. (4), the weight o, is computed by a learned alignment
model for each c,, which is implemented as a neural network such
that
_ exp(eot)

Zt/ exp(€ot’)
Cot =V tanh(Wso—1 + Uhy), @)

Qot

(©)

5061

where e, is the relevance score of each hidden representation h,
with respect to the previous hidden state of RNN decoder so—1. W
and U are weight matrices, and v is a vector so that the output of e,
is a scalar.

Since all the functions used in the encoder-decoder are differ-
entiable, the model can be trained using SGD by maximising the
average conditional log-likelihood over the training set as

N
. 1 ,
M= argmﬁxﬁglogP(y?,...,y8|xf, o xp, M),

where M denotes the set of model parameters, and NV is the num-
ber of training utterances. Unlike the hybrid model using the feed-
forward neural networks, this model is more complex in using dif-
ferent types of neural components. It leads to the problem that the
dynamic range of the gradients for some weights varies significantly,
which makes manually tuning the SGD learning rates challenging.
Previously, we used the Adadelta algorithm [27] to aumatically tune
the learning rate. However, it is still sub-optimal, because when we
train the recurrent nets, we clip the gradients as in [28] to avoid the
gradient explosion, but this makes the Adadelta algorithm unstable.
This issue will be further investigated in section 3.

2.3. Long memory decoder

As discussed before, the hidden state s, in Eq. (2) has multiple
functions, which may not be well realised by just using one recurrent
layer. In this work, we study the approach to improving the capacity
of s, by feeding in more informative features, which is again learned
by a recurrent net. More precisely, we modify the decoder as

P(yo‘yl,---,yo—l,co) :g(SOaCO) (8)
So = f(Po,So-1,Co) )
Po = f(Yo-1,Po-1) (10)

where we introduce another recurrent layer as in Eq. (10) which only
does the implicit language modelling and remembers the decoding
history. We then replace y,—1 by the recurrent hidden state p, as in
Eq. (9) so that hidden state s, can receive more information of the
decoding history from the input features. This decoder is expected
to have longer memory, and may work better without the language
model. It is also possible to feed p, into the softmax layer as

P(y0|y17'~~7y0—17co)29(507007130)' (11)

However, the role of p, may be overweighted in this approach,
therefor it may not be suitable for the conversational speech recog-
nition task investigated in this paper, where word sequences are less
predictable.

2.4. Comparison to CTC

CTC [13] does not directly compute the conditional probability of
the output sequence given the input sequence. Instead, it computes
the posterior probability of the label /; for every frame x; similar to
the hybrid model. In the case of using bi-directional RNN to trans-
form the acoustic feature x., this probability is computed using only
the softmax function without recurrent layer as

P(lulx) = g(hy, by). (12)

Since the classification is performed on the per-frame level, CTC
needs to compute the alignment between the acoustic frames and
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Fig. 1. Comparison of scheduling the SGD learning rate for training
the RNN encoder-decoder. The results were obtained by using 24
dimensional FBANK static features. 7 denotes the initial learning
rate and k is the learning rate decay factor. Here, the learning rate
was decayed for every 1000 mini-batches by a small factor.

output labels as part of the model training, and as observed in [14],
it may be sensitive to the initial alignment. In order to guarantee
that the lengths of the input and output sequences are the same, CTC
replicates the output labels so that a consecutive frames may corre-
spond to the same label. It then applies a rule to collapse the repli-
cated labels during the decoding, while the RNN decoder does not
have this problem. Finally, CTC still requires the independence as-
sumption of the acoustic frames, which is not required in the RNN
encoder-decoder approach.

3. RESULTS AND DISCUSSION

3.1. System setup

We report results using the Switchboard corpus of [29] released by
LDC with the catalog number as LDC97S62. It has a 300 hour
training set, and we show separate results for the Callhome English
(CHE) and Switchboard (SWB) evaluation sets. The vocabulary size
is around 30,000, and the number of training utterances in Switch-
board is 192,701. In this work, we evaluated both the mel-frequency
cepstral coefficients (MFCCs) and log-mel filterbanks (FBANKS) as
acoustic features, which were obtained using the Kaldi toolkit [30].
In the frond-end, we performed the mean and variance normalisation
on the per-speaker basis before we concatenating the features by a
context window of £5 frames. Following our previous practice [22],
we uniformly subsampled the spliced features for each utterance by
aratio of 1/3, which significantly reduced the training time. It is in-
teresting to see that subsampling was also applied in the CTC-based
system which improved the recognition accuracy in [14]. In our ex-
periments, the number of hidden units in the RNN encoder is 1000
unless specified otherwise, and the mini-batch size is 30 utterances.

3.2. SGD learning rate

Manually searching the SGD initial learning rate and the learning
rate decay factor (referred to SGD_manual) is expensive for train-
ing with a large dataset. In addition, the hyper-parameters may de-

Table 1. Comparison of SGD_adadelta and SGD_joint to
schedule the SGD learning rates.

SGD learning rate | Feature CHE SWB Avg
SGD_adadelta [22] | MFCC 599 388 494
SGD_joint MFCC 55.0 362 45.6
SGD_adadelta FBANK 56.8 347 458
SGD_joint FBANK 482 268 376
SGD_joint FBANK(static) 52.2 31.8 42.1

pend on the type of features and model configurations. Previously,
we applied the Adadelta algorithm [27] to automatically tune the
learning rate [22]. However, we found that it did not yield the op-
timal solution similar to the observation in [21]. As discussed in
Section 2.2, the Adadelta algorithm relies on the gradient to ad-
just the learning rate, however, in oder to avoid the gradient ex-
plosion problem, we clip the gradient and that makes the Adadelta
algorithm unstable. To address this problem, [21] proposed an ap-
proach to fix the gradient before applying Adadelta. In this work,
we applied the SGD_joint approach, namely, Adadelta followed
by SGD_manual. More specifically, we first run the Adadelta algo-
rithm until convergence, which usually takes around 10 - 15 epochs
for our task. We then switched to SGD_manual with small initial
learning rate (e.g., 0.01 - 0.02 in this work) for another few epochs to
fine tune the model. As shown in Table 1, this approach we achieved
significant WER reduction. Note that in these experiments, we used
words as the output units in the softmax function in Eq. (2).

We also compared two different type of acoustic features, i.e., 39
dimensional MFCCs and 45 dimensional FBANKSs both with delta
and delta-delta coefficients. Note that in both cases, we spliced the
features with the context window of +5. Compared to the hybrid
systems [31], we obtained a much larger gain by using FBANK fea-
tures, possibly due to that transforming the features by discrete co-
sine transform (DCT) makes it more difficult for RNNs to discover
the sequential patterns. Since RNN has strong ability in long de-
pendency modelling, it is interesting to know if the dynamic fea-
tures is still useful in this setup. Contrary to our expectation, we ob-
tained significantly higher WER without the dynamic features in our
experiment. In Figure 1 shows convergence of three systems with
different SGD algorithms, where we increased the number of filter
banks from 15 to 24. Again, SGD_joint achieved much better re-
sult compared SGD_adadelta, and it also converged much faster.
However, we did not obtain better results by using larger number of
filter banks. In the following experiments, we sticked to the 45 di-
mensional FBANKSs with dynamic coefficients, and the SGD_joint
optimisation algorithm.

3.3. Results of long memory decoder

We then evaluated the long memory decoder approach discussed in
section 2.3. In our experiments, the number of hidden units in recur-
rent layer Eq. (10) was set to be 300. It is much smaller than the
dimension of ¢,, which is 2000 with bidirectional RNNs. The intu-
ition is to emphasise the role of the context vector in the decoder as
Eq. (9). As shown in Table 2, the long memory decoder described as
Eq. (8) - (10) improved the recognition accuracy by more than 1%
absolute. However, the decoder defined as Eq. (11) did not work bet-
ter. We suspect that the decoder may be biased toward the implicit
language model. We then rescored the n-best list from the model
using a 3-gram language model, which was trained on Switchboard
and Fisher transcriptions using the KenLM tookit [32]. However,
we only obtained small improvements. The size of the n-best list
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Table 2. Results of language model rescoring and using long mem-
ory decoder. LongMeml is referred to Eq. (8), and LongMem?2 is
referred to Eq. (11).

System Output CHE SWB Avg
EncDec no LM word 482 268 37.6
EncDec + 3-gram rescoring | word 474 262  36.8
EncDec + LongMem1 word 46.5 263 364

+ 3-gram rescoring word 46.0 258 36.0
EncDec + LongMem?2 word 47.1 273 373

+ 3-gram rescoring word 464 265 365
EncDec no LM char 527 328 428
EncDec + 5-gram rescoring char 519 32,6 423
EncDec + LongMem1 char 51.6 309 413

+ 5-gram rescoring char 504 305 405

was 32, and similar to the observation in [24], increasing the size of
the n-best list did not further reduce the WER.

Using word level output units is not optimal. It cannot gener-
alise well to words that are unseen in the training set, and it may not
work well for words of low frequency. Furthermore, for very large
vocabulary tasks, the softmax layer will be big, which may slow
down the model training. Alternative output units are phonemes or
characters. In this work, we evaluated the characters as output units,
which has the advantages that the pronunciation dictionary is not
required, and it is possible to generalise to out-of-vocabulary words.
The number of characters in our system is 35 including symbols such
as hyphen, slash, space, etc, and tokens corresponding to the
noise [noise], [vocalized-noise], [laughter]. In our
experiments, we observed that the character level encoder-decoder
model was computationally more expensive. This is because that
the output sequences are much longer, and it requires many more it-
erations to estimate the attention weights in Eq. (6). Moreover, the
character baseline system also performed worse compared to the cor-
responding word level system as predicting a longer output sequence
is more challenging.

3.4. Depth of the encoder

In the previous experiments, we have only used 1 layer of RNN in
the encoder after 1 hidden layer of feedforward neural network for
feature extraction. In [22], we have shown that using more hidden
layers in the feedforward neural network does not reduce the WER
significantly. In this work, we investigate if using multiple layers of
RNN in the encoder can improve the recognition accuracy. How-
ever, this configuration significantly increases the model size, and
limited by the size of the GPU memory, we only performed the ex-
periments with character level output units.". The results are given
in Table 3, which demonstrate that using multiple RNN layers in the
encoder can significantly improve the recognition accuracy. How-
ever, the gain is much smaller for the model with 1000 hidden units
in the RNN, which may be due to model overfitting. As aforemen-
tioned, we used the GRU [18] in all the recurrent layers, which has
2 additional gates compared to the conventional RNN. Adding one
more layer of RNN can significantly increase the number of model
parameters, especially in the case of using bidirectional RNNSs as in
this work. After cutting down the number of hidden units to be 500,

ITraining this model requires large memory since all the hidden states

(h¢, hy) for each frame in a minibatch are kept in the memory in order to
dynamically compute the context vector c,.

Table 3. Results of using multiple RNN layers in the encoder.

System Output Dim CHE SWB Avg
EncDec - 1 layer char 1000 527 328 428
EncDec - 2 layer char 1000 503 29.1 397
EncDec - 1 layer char 500 541 345 444
EncDec - 2 layer char 500 484 288 38.7
EncDec - 3 layer char 500 482 273 378

Table 4. Comparison to CTC and DNN-HMM hybrid systems.
In [17], the LMs were trained using a corpus of 31 billion words,
while in [16, 8], the LMs were trained using the Switchboard and
Fisher transcriptions.

System Output CHE SWB Avg
DNN-HMM sMBR (8] - 24.1 12.6 184
CTCno LM [17] char 56.1 38.0 47.1
CTC+5-gram char 47.0 30.8 39.0
CTC+7-gram char 43.8 27.8 359
CTC+NNLM (1 hidden layer) char 41.1 234 323

CTC+NNLM (3 hidden layers) char 399 21.8 309
CTC+RNNLM (1 hidden layer) char 417 242 33.0
CTC+RNNLM (3 hidden layers) char 402 214 30.8

Deep Speech [16] char 31.8 20.0 25.9
EncDec no LM word 46.5 26.3 364
EncDec no LM char 482 273 378

we achieved significantly lower WER with multiple RNNs in the en-
coder. In the future, we shall evaluate the long memory decoder in
this setup.

3.5. Comparison to CTC

In Table 4, we compare our results to previously published results
using CTC on the same dataset [16, 17]. Note that in the CTC sys-
tems [16, 17], strong LMs were applied during decoding. According
to [17], the LM can significantly improve the recognition accuracy of
CTC systems. From Table 4, our encoder-decoder systems achieved
much higher recognition accuracy compared to CTC in the case of
no LM setting. However, we only obtained marginal improvement
by LM rescoring, and therefore, our best system is still far left be-
hind the CTC counterpart. In the future, we shall incorporate the
LM directly into the decoder. We also refer to the publicly reported
hybrid baseline in [8]. We see that there is still a big gap between
the end-to-end and hybrid systems on this dataset. However, we also
notice the recent results in [14], where CTC outperformed the hybrid
baseline on the Google voice search task.

4. CONCLUSIONS

In this paper, we present the improvements obtained for the RNN
encoder-decoder based end-to-end speech recognition on the large
vocabulary task. We show a simple yet efficient and effective ap-
proach to schedule the SGD learning rates which achieves large gain
in our experiments. In principle, the encoder-decoder approach does
not need to rely on a language model given enough training data, and
we proposed an approach to extend the decoder with long memory
to enhance its power for implicit language modelling. Finally, us-
ing multiple recurrent layers in the encoder can significantly reduce
the WER. In the future, we shall investigate using multiple recurrent
layers in the decoder as well as incorporating a language model into
the decoder.
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