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ABSTRACT

Deep neural networks (DNNs) for acoustic modeling have been
shown to provide impressive results on many state-of-the-art au-
tomatic speech recognition (ASR) applications. However, DNN
performance degrades due to mismatches in training and testing
conditions and thus adaptation is necessary. In this paper, we ex-
plore the use of discriminative auxiliary input features obtained
using joint acoustic factor learning for DNN adaptation. These fea-
tures are derived from a bottleneck (BN) layer of a DNN and are
referred to as BN vectors. To derive these BN vectors, we explore
the use of two types of joint acoustic factor learning which capture
speaker and auxiliary information such as noise, phone and articu-
latory information of speech. In this paper, we show that these BN
vectors can be used for adaptation and thereby improve the perfor-
mance of an ASR system. We also show that the performance can be
further improved on augmenting these BN vectors to conventional
i-vectors. In this paper, experiments are performed on Aurora-4,
REVERB challenge and AMI databases.

Index Terms— deep neural networks, joint factor learning,
adaptation, bottleneck vectors, robust speech recognition.

1. INTRODUCTION

In the recent years, many state-of-the-art automatic speech recog-
nition (ASR) systems employ deep neural networks (DNNs) for
acoustic modeling. In [1, 2], it has been shown that the DNN-
hidden Markov models (HMMs) outperform the conventional Gaus-
sian mixture models (GMMs) - HMM systems. However, like
many machine learning algorithms, DNN performance suffers due
to mismatch between the training and the testing conditions. Thus
adapting DNN acoustic models to unseen test conditions becomes
an important research area to build robust ASR systems. Some of the
adaptation techniques for GMM-HMM systems are maximum likeli-
hood linear regression (MLLR) [3,4], constrained MLLR (CMLLR)
or feature domain MLLR (fMLLR) [5]. DNNs are discriminative
models and thereby require adaptation techniques that are different
from those developed for GMMs.

In [6–8], DNN adaptation is performed by adding a linear trans-
formation layer to an existing DNN. This linear transformation layer
can be added at the input, hidden or at the output layers. In this ap-
proach, only the parameters related to the linear transformation layer
are updated. In [9], feature space discriminative linear regression
(fDLR) is used for adaptation. As an alternative to this approach,
one can also retrain all the parameters of a DNN. However, such an
approach may destroy previously learned weights and biases. An

approach to overcome this issue is to use regularization techniques
during adaptation [10–12]. Adaptation can also be performed by us-
ing task specific information such as speaker or noise representative
features as auxiliary inputs to a DNN training [13]. It is shown that
DNN models trained in such an approach become independent to
training conditions and are able to generalize better to unseen test
conditions. Some of the feature representations explored for such
an approach are speaker codes [14, 15], i-vectors [16] and speaker
bottleneck (BN) vectors [17].

Typically, many existing adaptation approaches focus only on a
single factor, e.g. either noise or speaker. However, there is an in-
creased interest towards robust ASR approaches dealing with uncer-
tainties due to multiple factors, which is a more realistic and a practi-
cal problem to address. Multi-factor adaptation was explored to han-
dle speaker and environmental noise [18, 19] and for low-footprint
speech applications [20]. In [21], separate speaker and phoneme
neural networks were built and then joined at the BN layer level to
enable discriminative joint factor analysis for speaker normalization.

In this paper, we explore feature representation obtained using
joint acoustic factor learning. The two types of joint acoustic fac-
tor learning used in this paper are multi-task learning (MTL) and
joint task training (JTL). In MTL, the network is trained to perform
classification on two or more related tasks using a shared represen-
tation [22]. In general, in MTL, the parameters of the output layer
are not shared and thus each output layer represents a task. In JTL,
all the parameters are shared and we use only a single output layer
to represent all the tasks. In this paper, we derive vectors from a BN
layer of a DNN which is trained using MTL or JTL. These vectors
are referred to as BN vectors. As mentioned earlier, BN vectors were
also use in [17]. However, these BN vectors are obtained from a BN
layer trained on speaker classes and are then expanded into super
vectors by incorporating phoneme posterior probabilities. The main
contributions of this paper are:

• We explore the use of two types of joint acoustic factor learn-
ing, namely multi-task and joint task learning, to derive BN
vectors. In this approach, the DNN built to derive BN vectors
are trained to capture speaker and other auxiliary information
of speech such as noise, phoneme and articulatory informa-
tion.

• We provide experimental results to show that the BN vectors
obtained using joint acoustic factor learning perform better
than that of the BN vectors obtained using only the speaker
information.

• We also provide experimental results to show that these BN
vectors can be used as a complementary information to the
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i-vectors and thereby improve the performance of the ASR
systems. Note that all the experiments reported in this pa-
per are performed on Aurora-4, REVERB challenge and AMI
databases.

The organization of this paper is as follows: Section 2 describes
the two techniques used to derive BN vectors using joint acoustic
factor learning. In Section 3, experiments are performed on Aurora-4
database using BN vectors derived from speaker and other auxiliary
information of speech and a detailed experimental comparison of
these vectors is provided. To validate the experimental results we
also provide results on using BN vectors for adaptation on REVERB
challenge and AMI databases in Sections 4 and 5 respectively.

2. USE OF JOINT ACOUSTIC FACTOR LEARNING TO
DERIVE BOTTLENECK VECTORS

In this Section, we describe two types of joint acoustic factor learn-
ing to derive BN vectors for adaptation. The two types of joint
acoustic factor learning techniques are multi-task learning (MTL)
and joint task learning (JTL). In this paper, we place the bottleneck
(BN) layer before the output layer [17]. For convenience, the DNNs
used to derive BN vectors are referred to as BN-DNN.

In a conventional BN-DNN, the network is trained as a classi-
fier for a single task and the network parameters are learned through
optimizing the cross entropy objective function. We refer to this
learning as single task learning (STL). For BN vectors obtained us-
ing STL, we use a BN-DNN that is trained to output speaker IDs as
a one-hot vector.

To make use of multiple factors of speech to train a BN-DNN we
employ MTL. In this work, we consider two sets of tasks and are rep-
resented as Ts and To. Ts represent the speaker task and To represent
tasks which capture auxiliary information such as noise, phoneme or
articulatory information. Let |Ts| represents the number of speaker
class labels and To represents the number of auxiliary class labels.
For MTL, BN-DNN contains two output layers which are of |Ts|
and |To| dimensions and share the BN layer. Note that for MTL, the
BN-DNN outputs two one-hot vectors for each of the tasks. Let Js
and Jo be the cross entropy objective function for speaker and aux-
iliary tasks respectively. Then, the net objective function, J , is given
as: J = αJs + (1− α)Jo, where α ∈ [0, 1].

As an alternative to MTL, we also explore the use of JTL to
train a BN-DNN. Like MTL, JTL also includes 2 tasks. However
the difference is that there is only one output layer and each output
class represents a combination of two factors, i.e. the number of
output classes is equal to |Ts| × |To|.

Note that the BN vectors obtained are at a frame level. In or-
der to represent each utterance or a speaker with a single vector, we
average all the BN vectors (per utterance or per speaker) and then
perform a length normalization on these vectors. For simplicity, in
all the future references in this paper, BN vectors refer to the aver-
aged and length normalized vectors.

3. EXPERIMENTS ON AURORA-4 DATABASE

In this Section, we perform experiments on Aurora-4 [23] and the
word error rate (WER) is reported. The acoustic model is trained on
a window of 11 frames of 40 dimensional fMLLR features. These
fMLLR features are obtained using all the data from a given speaker.
The DNN model has a 440 dimensional input layer, 7 hidden layers
of 2048 dimensions each and a 2013 dimensional output layer. Sig-
moid activation functions are used for all the hidden units. All the
acoustic models are trained using Kaldi [24] and CNTK [25].

There are 15.11 hours of speech in the multi-condition training
set, 8.94 hours of speech in the development set and 9.37 hours of
speech in the evaluation set. Note that the development set is used as
cross validation during the network training. There are a total of 83
speakers in the training data, 10 speakers in development set and 8
speakers in the test data which are not matched. There are 14 noise
conditions which are matched for the training and testing data.

Table 1. WER obtained using fMLLR, fMLLR + i-vector per
speaker and fMLLR + i-vector per utterance on Aurora-4.

fMLLR WER (%)
A B C D Avg.

baseline 2.6 5.7 4.8 15.3 9.6
+ i-vectors (per speaker) 2.5 5.7 4.4 14.4 9.2
+ i-vectors (per utt.) 2.6 5.6 4.3 14.3 9.0

Table 1 shows the WER of the baseline systems obtained us-
ing fMLLR in combination with the speaker and utterance level i-
vectors. Aurora-4 consists of recordings from 2 different channels,
namely Channel-1 (single microphone) and Channel-2 (sampling of
18 different microphones). The test dataset is divided into four sub-
sets: A (clean speech + Channel-1), B (noisy speech + Channel-1),
C (clean speech + Channel-2) and D (noisy speech + Channel-2). A
GMM with 128 Gaussians is used as an universal background model
to obtain 100 dimensional i-vectors. These i-vectors are obtained
using fMLLR features. It can be seen that the i-vectors per utter-
ance are performing better than that of the speaker level i-vectors.
Thus, for Aurora-4, we use i-vectors obtained per utterance for all
the experiments.

3.1. Use of BN Vectors for Adaptation

For Aurora-4, we use a 3 hidden layer BN-DNN network. The BN
layer is of size 100 and it contains linear activation units. The other 2
hidden layers are of size 2048 and contain Sigmoid activation units.
Note that to be consistent with the i-vector baseline we use BN vec-
tors per utterance. The input to the BN-DNN is 40 dimensional fM-
LLR features with a context window of 11 frames.

As described earlier in Section 2, the primary task is speaker
(SP) and the auxiliary tasks are noise (NS), context dependent (CD)
units, context independent (CI) units and articulatory (AR) units. For
convenience, we refer to the BN features obtained using MTL or
JTL as SP-X, where X can represent NS, CD, CI or AR. In Sections
3.1.1-3.1.4, detailed experimental results for BN vectors obtained
using STL, MTL and JTL are provided.

3.1.1. Speaker-Noise BN Vectors

Table 2 shows WER obtained using speaker and noise information to
train the BN-DNN. Note that we use 84 classes for the speaker task
(83 speaker classes + silence class), 14 classes for noise. For MTL,
we use α = 0.5 (as shown in Section 2). From Table 2, it can be seen
that: (a) SP-NS BN vectors obtained using MTL perform similar to
that of the SP BN vectors, (b) SP-NS BN vectors obtained using JTL
performs better than that of SP BN and SP-NS (using MTL), (c) It
can also be seen that i-vectors per utterance (as described in Table 1)
perform better than that of SP-NS BN vectors using JTL.

In Section 3.1.2, we explore auxiliary tasks which use phone
and articulatory information of speech. The results indicate that,
for Aurora-4, phoneme or articulatory classes are a better choice to
derive BN vectors for adaptation.
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Table 2. WER obtained using fMLLR in combination with SP, SP-
NS BN vectors on Aurora-4. Note that SP BN vector is obtained
using STL and SP-NS BN vectors are obtained using MTL and JTL

fMLLR Type WER(%)
A B C D Avg.

+ SP BN STL 2.5 5.6 4.6 14.8 9.3
+ SP-NS BN MTL 2.5 5.6 4.7 14.8 9.3
+ SP-NS BN JTL 2.6 5.6 4.6 14.4 9.2

3.1.2. Speaker-Phone and Speaker-Articulatory BN Vectors

In this Section, we explore the use of phoneme classes of speech as
auxiliary information to derive BN vectors. We use 2013 CD units
and 42 CI units. These 42 classes of CI units are further grouped
into 24 classes based on the articulatory properties of speech sounds
such as place and manner of articulation for consonants, duration and
tongue position for vowels, fricatives, nasals and semi-vowels [26].

Table 3. WER obtained using fMLLR in combination with SP-CD,
SP-CI and SP-AR BN vectors on Aurora-4. Note that SP-CD BN
vectors are obtained using MTL and SP-(CI/AR) BN vector are ob-
tained using MTL and JTL.

fMLLR Type WER (%)
A B C D Avg.

+ SP-CD BN MTL 2.5 5.6 4.5 14.3 9.1
+ SP-CI BN MTL 2.5 5.5 4.5 14.4 9.1
+ SP-AR BN MTL 2.5 5.6 4.5 14.4 9.1
+ SP-CI BN JTL 2.6 5.5 4.4 14.2 9.0
+ SP-AR BN JTL 2.6 5.5 4.3 13.9 8.8

Table 3 shows the WER obtained using SP-(CD/CI/AR) BN vec-
tors. Note that for SP-(CI/AR) BN vectors are obtained using MTL
and JTL and SP-CD BN vectors can only be obtained using MTL.
This is because JTL limits the number of classes and thereby the
type of classes for training. From Table 3, it can be seen that the: (a)
BN vectors obtained using JTL perform better than that of the BN
vectors from MTL, (b) SP-AR BN vectors from JTL perform better
than SP-(CD/CI) BN vectors. We use α = 0.5 to obtain BN vec-
tors using MTL. However, this value of α might not be an optimum
value and thus in Section 3.1.3 we perform experiments to select the
optimum value of α.

3.1.3. Effect of α on MTL Training

Fig. 1 shows WER obtained using BN vectors for various values of
α. Note that for α = 1.0, the training would be that of the STL
with a WER of 9.32%. From Fig. 1, it can be seen that SP-NS BN
vectors do not perform as well as the SP-(CD/CI/AR) BN vectors.
Thus, for Aurora-4, phoneme classes are a better choice of auxiliary
information to derive BN vectors using MTL. It can also be seen
that SP-CI BN vectors perform slightly better than that of SP-CD
and SP-AR BN vectors for α = 0.8. Thus, we choose 0.8 to be the
optimum value of α and consider SP-CI BN vectors as the optimum
BN vectors using MTL for Aurora-4.

3.1.4. Comparison of BN vectors obtained using MTL and JTL

In this Section, we provide results to compare the BN vectors ob-
tained using MTL and JTL. In order to compare we consider the
best BN vectors for each of the learning methods, i.e., for MTL we
use SP-CI BN vectors (as described in Section 3.1.3) and for JTL
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Fig. 1. WER obtained using different values of α to derive SP-
(NS/CD/CI/AR) BN vectors. In this figure all the BN vectors are
obtained using MTL on Aurora-4.

we use SP-AR BN vectors (as described in Section 3.1.2). We use
α = 0.8 to obtain SP-CI BN vectors.

Table 4. WER obtained using fMLLR in combination with the SP-
AR BN , SP-CI BN and i-vectors on Aurora-4 database.

fMLLR WER (%)
A B C D Avg.

+ SP-AR BN (JTL) 2.6 5.5 4.3 13.9 8.8
+ i-vector + SP-AR BN 2.6 5.5 4.0 13.6 8.7(JTL)
+ SP-CI BN (MTL) 2.4 5.4 4.2 14.1 8.9
+ i-vector + SP-CI BN 2.6 5.4 4.0 13.6 8.7(MTL)

From Table 1 and Table 4 it can be seen that: (a) SP-AR and
SP-CI BN vectors can be used to improve the performance over the
i-vector baseline system, (b) SP-CI and SP-AR BN vectors can be
used along with the i-vectors to further improve the performance.
The performance gain is statistically significant for p = 0.05. This
improvement is due to the fact that these BN vectors provide com-
plementary information which is not being captured by the i-vectors.
From Table 4, it can be seen that the BN vectors obtained using
JTL and MTL in combination with the i-vectors have similar per-
formance. However, JTL limits the number of classes and thereby
the type of classes for training. Thus JTL poses an issue and can
be overcome by using MTL training. Therefore SP-CI BN vectors
can be assumed to be a better representation in cases where there are
tasks with large number of output targets. In order, to further analyze
the performance of SP-CI BN vectors, we perform evaluations on 2
more databases namely REVERB challenge and AMI (as described
in Sections 4 and 5 ).

4. EVALUATIONS ON REVERB CHALLENGE DATABASE

The REVERB challenge database consists of training, development
and evaluation datasets [27, 28]. The training data consists of rever-
berant and noisy speech created by simulation. The utterances are
based on the WSJCAM0 5K corpus [29]. The test sets consists of
simulated (SimData) and real recordings (RealData). RealData are
part of the MC-WSJ-AV corpus [30]. In this paper, we report results
only for the RealData set as it is more challenging. The training data
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consists of 17.5 h from 92 speakers. The RealData development and
evaluation sets consist of 0.3 h from 5 speakers and 0.6 h from 10
speakers, respectively. We use the development data for cross vali-
dation and WER is reported for the evaluation data. Refer to [28] for
a detailed description of the REVERB challenge data.

In this experiment, we process the 8ch recordings and use
weighted prediction error (WPE) algorithm to suppress dereverber-
ation [31]. WPE performs utterance-based dereverberation in the
STFT domain. This algorithm achieved high performance on the
REVERB challenge [32]. To further suppress noise after derever-
beration, we use a weighted delay-sum beamformer [33, 34]. Note
that in the experiments below, fMLLR features are computed per
speaker. It assumes a-priori knowledge of speaker ID information1.
Consequently, the results with fMLLR features should be consid-
ered carefully when comparing with other results reported on the
task that do not exploit such a-priori knowledge.

Table 5. WER obtained using fMLLR and LDA features in combi-
nation with SP BN, SP-CI BN and i-vectors on REVERB challenge
evaluation dataset. Note that SP and SP-CI BN vectors are obtained
using STL and MTL respectively.

System WER (%)
fMLLR LDA

baseline 20.6 31.4
+ dereverberation & beamforming 11.2 20.1

+ i-vectors 10.8 18.1
+ SP BN (STL) 11.3 17.4
+ SP-CI BN (MTL) 11.2 16.9
+ i-vectors + SP-CI BN (MTL) 11.0 16.1

For REVERB challenge database, we build two acoustic mod-
els using 40 dimensional fMLLR and linear discriminant analysis
(LDA) features. The LDA features are obtained by projecting 13 di-
mensional Mel-frequency cepstral coefficients (with a context win-
dow of 7) to a 40 dimensional feature. The DNN and BN-DNN
architectures used are similar to that of the models used for Aurora-
4. 100 dimensional i-vectors are obtained using a GMM with 128
Gaussians.

Table 5 shows the WER on REVERB challenge evaluation
dataset obtained using fMLLR and LDA features. We use 92
speaker classes and 42 CI units to obtain SP and SP-CI BN vectors.
We use α = 0.8 to obtain SP-CI BN vectors. On applying derever-
beration and beamforming, there is a significant improvement for
both fMLLR and LDA features. Thus, for future references in this
Section, the experiments reported are on the features obtained after
dereverberation and beamforming. From Table 5, it can be seen that:
(a) For fMLLR features, use of SP and SP-CI BN vectors do not
improve the WER and i-vectors perform better than that of the SP
and SP-CI BN vectors, (b) For LDA features, use of SP and SP-CI
BN vectors improve the WER and SP-CI perform better than that
of SP BN vectors. For LDA, it can also be seen that augmenting
SP-CI BN to i-vectors improve the performance as compared to that
of using only i-vectors or SP-CI BN vectors.

The results reported for the LDA features on REVERB chal-
lenge database are consistent with the results seen on Aurora-4.
However, this performance gains are not being reflected for fMLLR
and a detailed analysis on the features is required to provide further
insight into this problem. The analysis on the poor performance of

1Note that i-vector based speaker clustering has been successfully used
on the REVERB task to remove such a constraint [35].

BN vectors using fMLLR on REVERB challenge data will be part
of our future investigations.

5. EVALUATIONS ON AMI DATABASE

In this Section, we provide evaluation results using SP-CI BN vec-
tors on AMI database. To train the DNN acoustic model and BN-
DNN we use, 9.4 hours (10000 utterances) of data which is ran-
domly chosen from the AMI ihm database. For cross validation and
testing, we use 0.85 hours (1108 utterances) and 8.6 hours (12612 ut-
terances) of data respectively. Note that the test set used is the AMI
ihm test set. 40 dimensional fMLLR features with a context win-
dow of 11 frames is provided as an input to a 6 layer DNN network
with 2048 nodes for each of the hidden layer and 3962 output units.
To derive the BN vectors, a 3 layer BN-DNN with 128 units for the
BN layer and 1024 nodes to the other hidden layers is used. Similar
DNN and BN-DNN structures are used in [16, 17]. In this task we
use 128 dimensional i-vectors obtained using GMMs consisting of
2048 Gaussians [16]. The number of speakers and CI units are 547
and 187 respectively. We use α = 0.8 for MTL training.

Table 6. WER obtained using fMLLR in combination with SP BN,
SP-CI BN and i-vectors on AMI ihm 10000-utterance subset.

fMLLR WER (%)
baseline 34.9

+ i-vectors 34.4
+ SP BN (STL) 34.6
+ SP-CI BN (MTL) 34.3
+ i-vectors + SP-CI BN (MTL) 34.1

Table 6 shows the WER obtained using SP BN, SP-CI BN and
ivectors for adaptation. From Table 6, it can be seen that: (a) System
performance improves on using i-vectors and BN vectors, (b) SP-CI
BN vectors perform better than that of SP BN vectors and is compa-
rable to the i-vectors, (c) SP-CI BN vectors can be augmented to the
i-vectors to further improve the performance.

6. CONCLUSION

In this paper, we explored two types of joint acoustic factor learning
(referred to as MTL and JTL) to derive BN vectors. We have shown
that SP-CI BN vectors obtained using MTL and JTL perform better
than that of SP BN vectors obtained using STL. For Aurora-4, we
have compared the performance of SP-(NS/CD/CI/AR) BN vectors
and have shown that SP-CI BN vectors are optimum for adaptation.
We have also performed experiments using SP-CI BN vectors on
REVERB challenge and AMI databases. For REVERB challenge
database, we have shown that the improvements were only obtained
using the LDA features. As for AMI database, we have seen im-
provements on using SP-CI BN vectors over the baseline. We have
also provided experimental results to indicate that these BN vectors
capture complementary information to that of the i-vectors and thus
can be augmented with the i-vectors for adaptation.
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