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ABSTRACT

Recently Long Short-Term Memory (LSTM) Recurrent Neural Net-
works (RNN) acoustic models have demonstrated superior perfor-
mance over deep neural networks (DNN) models in speech recog-
nition and many other tasks. Although a lot of work have been re-
ported on DNN model adaptation, very little has been done on LSTM
model adaptation. In this paper we present our extensive studies of
speaker adaptation of LSTM-RNN models for speech recognition.
We investigated different adaptation methods combined with KL-
divergence based regularization, where and which network compo-
nent to adapt, supervised versus unsupervised adaptation and asymp-
totic analysis. We made a few distinct and important observations.
In a large vocabulary speech recognition task, by adapting only 2.5%
of the LSTM model parameters using 50 utterances per speaker, we
obtained 12.6% WERR on the dev set and 9.1% WERR on the eval-
uation set over a strong LSTM baseline model.

Index Terms— Long Short-Term memory (LSTM), Recurrent
Neural Networks, Speaker Adaptation, Acoustic Modeling

1. INTRODUCTION

The application of deep neural networks (DNN) to speech recog-
nition has achieved tremendous success due to its superior per-
formance over the traditional GMM/HMM acoustic models ([1],
[2]). It has become the dominant acoustic modeling approach for
speech recognition, especially for large vocabulary tasks. While
it has strong modeling power through multiple layers of nonlin-
ear processing, it is still not immune to many known problems for
GMM/HMM based systems such as mismatch of training and test
data. When tested in unseen conditions or unseen test speakers, it
still has performance degradation. To address this problem, many
adaptation techniques have been proposed. There are several cate-
gories of speaker adaptation approaches. First, speaker-independent
(SI) DNN model, or certain layer(s) of the model are updated on
adaptation data ([3] [4]). To avoid over-fitting, regularization such
as [3] is applied. Second, inserting and adapting speaker-dependent
linear layer into the network to transform either input feature (fDLR
[5]), top-hidden-layer output ([6]), or hidden layer activations ([7]
[8] [9])). Third, using speaker adaptive features ([5] [10]), or augu-
menting input features with speaker information ([11] [12] [13] [14]
[15]). Fourth, subspace method such as [16] [17] [18].

Another problem with DNN is that it only provides limited
temporal modeling by operating on a fixed-size sliding windows of
acoustic frames. As a contrast, recurrent neural networks (RNN) can
model long-term dependency due to its recurrent (loop) structure.
However standard RNN training suffers from the gradient vanishing
and exploding problem ([19]), long short-term memory (LSTM)
RNN has been proposed [20] to address the issue and achieved

great success in many tasks. Recently it has been applied to speech
recognition ([21] [22] [23] [24] [25]) and demonstrated superior per-
formance. A natural question is that once we switch to LSTM-RNN
models whether we can we still do effective speaker adaptation as
for DNN and what are the issues specific to LSTM-RNN structure.
Although a lot of studies have been done for DNN speaker adapta-
tion, there is very little research on LSTM-RNN model adaptation.
The only one we are aware of is [26] where only a modest gain is
demonstrated on Switchboard task.

In this paper we present an extensive study on speaker adapta-
tion of LSTM-RNN models. We investigated different adaptation
methods, in combination with KL-divergence based regularization,
which is shown to be crucial. We explored every network component
to discover the most effective one to adapt. We had a few distinct
and important observations, different from [26]. We also compared
supervised vs. unsupervised adaptation, LSTM adaptation vs. DNN
adaptation, and conducted an asymptotic analysis. In a large vocabu-
lary speech recognition task, by adapting only 2.5% of the model pa-
rameters using 50 utterances per speaker, we obtained 12.6% WERR
on the dev set and 9.1% WERR on the evaluation set, over a strong
LSTM baseline model.

The remainder of this paper is organized as follows: Section
2 reviews LSTM RNN model; Section 3 presents LSTM adapta-
tion methodology; Section 4 presents the experimental results; We
present our conclusions and thoughts for future work in Section 5.

2. LSTM RNNS

Different from feedforward DNNs, RNNs are able to model the tem-
poral dynamics by using some form of memory. Given an input
sequence X = (x1, · · · ,xT ), a RNN layer computes the hidden
states H = (h1, · · · ,hT ), iteratively via ht = H(xt,ht−1;M)
Here,M is the parameter of the RNN andH is a nonlinear function.
In the LSTM architecture, the nonlinearH function is calculated us-
ing the following equations:

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi) (1)
f t = σ(Wfxxt +Wfhht−1 +Wfcct−1 + bf) (2)
ct = f t � ct−1 + it � φ(Wcxxt +Wchht−1 + bc) (3)
ot = σ(Woxxt +Wohht−1 +Wocct + bo) (4)
ht = φ(ct)� ot (5)

Here � denotes element-wise multiplication, φ is a nonlinear func-
tion which squashes the input to [−1, 1]; ct denotes the states the
memory cells; it,f t,ot are the input gates, forget gates and output
gates of the memory cells respectively; Wic,Wfc and Woc are the
peephole connection matrices, which are usually diagonal. More-
over, it is proposed in [23] that a recurrent projection matrix P can
be used to transform the output to a low-dimensional space, i.e, the
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Eq. (5) is replaced by the following equation:

ht = P(φ(ct)� ot) (6)
Given the above LSTM structure, a deep LSTM can be built by

stacking multiple layers. The hidden state of the last LSTM layer,
h

(L)
t , is used to predict the senone posterior yt using the softmax

operation, i.e., yt = softmax(Wh
(L)
t + b). Figure 1 illustrates

a L-layer deep LSTM architecture with optional affine transform,
A(l), between layers, which will be discussed in the next section.
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Fig. 1. A deep LSTM neural network, with optional affine trans-
forms between layers, is used to convert the input xt to the senone
posteriors yt.

3. ADAPTATION OF LSTM RNN MODEL

A practical constraint for a large scale speech recognition system is
that the system needs to serve many users; therefore the user specific
parameters should be kept small. The main goal of this investigation
is to develop methods to effectively adapt the speaker-independent
(SI) model using a minimal number of speaker-specific parameters.
Two approaches are studied in this work: adapting existing neural
network components and adapting inserted affine transformation be-
tween layers.

3.1. Adapt Existing Network Components

Various network components can be modified to a particular speaker
to reduce the mismatch introduced by speaker differences. There are
three kinds of matrices in a LSTM layer :

• Matrices connecting static input (xt) to gates and cells, i.e.,
Wix,Wfx,Wox and Wcx;

• Matrices connecting recurrent input (ht−1) to gates and cells,
i.e., Wih,Wfh,Woh and Wch;

• The P matrix which transforms the cell output to a low di-
mension input for the next frame.

Since the second and third kinds of matrices are inside the recurrent
loop, they are also impacted by frames in history. One issue men-
tioned in [26] is that adapting weight matrices inside the recurrent
loop using limited data may not be robust. However, we believe that
with a proper regularization, a reliable adaptation can be achieved.
On the other hand, we argue that adapting matrices inside the loop
can potentially be more powerful than the non-recurrent counterpart
as some speaker characteristics exhibits in the temporal pattern (e.g.
speaking style). This will be demonstrated in the Section 4.

3.2. Affine Transformation Based Adaptation

Inspired by the success of SVD-based DNN adaptation [7], we pro-
pose to insert an affine transform on top of each LSTM layer, as
shown in the dashed box in Figure 1. The transformation matrix
is square and has the same size as the LSTM output ht. Due to the
projection matrix inside LSTM layer, its output dimension is smaller
than the cell dimension; therefore the inserted affine transform ma-
trix is smaller than those internal matrices inside LSTM. Note that
the transform matrix is inserted after the recurrent connection (ht to
ht−1); hence it does not affect the recurrent hidden activations.

In the above two approaches, either some model parameters are
updated for each speaker or a speaker specific transformation is used.
For convenience, we denote these speaker-specific parameters for the
s-th speaker as Ms.
3.3. KL-Divergence Regularized Adaptation

To estimate Ms, a conventional approach is to estimate them on the
adaptation data using the cross entropy criterion, i.e.,

Ms = argmin
M
E{KL(pdata(yt|xt)||p(yt|xt,M))} (7)

where the expectation is taken on the s-th speaker’s adaptation data;
p(yt|xt,M) is the posterior distribution predicted using speaker-
specific parameters M, and pdata(yt|xt) is the ground-truth poste-
rior distribution; if a hard alignment is used, p(y|xt) = δ(y = st)
where δ is Kronecker delta and st is the label of the xt.

However, when there is limited adaptation data, directly opti-
mizing this cross entropy criterion often leads to poor performance
due to over-fitting. KL-Divergence regularization is proposed [3] to
force the senone distribution estimated from the adapted model to be
close to that from the baseline model, i.e, the following criterion is
used:

Ms = argmin
M
E{(1− ρ)KL(pdata(yt|xt)||p(yt|xt,M)

+ρKL(p(yt|xt,M
si)||p(yt|xt,M))} (8)

where ρ is the regularization weight, and Msi is the unadapted
speaker-independent parameters.

4. EXPERIMENTS

We conducted experiments on a Microsoft US-English mobile phone
personal assistant (Cortana) task. Training and test data set contains
mobile phone voice search (VS), short message dictation (SMD)
and commands. Training set has 1200 hour live audio with hu-
man transcriptions. Two test sets are used. For evaluation of the
baseline DNN and LSTM models, a large test set of 125K words
(referred as cortana-test below) without speaker information is used.
For speaker adaptation experiments, a data set of 50 speakers is used,
each has 100 to 200 utterances, out of which 50 for testing (referred
as spks50-test, in total 12K words), the remaining for adaptation.
Except for the asymptotic analysis, only 50 utterances per speaker
is used for adaptation, as this represents the most typical scenario in
our system. There is no time overlap between adaptation set and test
set. For development (e.g. tuning hyper-parameters) purpose and
fast experiment turn-around, we use another data set of 10 speakers
(also 50 utterances for adaptation, 50 for testing).
4.1. Baseline Systems

The front-end generates 29-dimensional log-mel filterbank features
plus their 1st and 2nd order derivatives, resulting a 87-dimensional
feature vector per frame. DNN uses a sliding context window of
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11 frames, so network input dimension is 957. LSTM-RNN uses a
single frame feature vector as input. A GMM-HMM system is first
built with 5976 context-dependent tied HMM states (or senones).
Training data is force-aligned with this model to generate frame
level targets for DNN and LSTM-RNN training, so both DNN and
LSTM-RNN have the same output layer size of 5976. Our best DNN
model contains 5 hidden layers, each layer has 2048 nodes. Our best
LSTM-RNN model has 4 stacked LSTM layers with projection, each
layer has 1024 memory cells and 512 output units. Both DNN and
LSTM-RNN were trained to minimize the frame-level cross-entropy
criterion. LSTM-RNN training uses the truncated back propagation
through time (BPTT) algorithm (back to 20 frames). To speed up
training, we stack 20 utterances in parallel in a mini-batch. We delay
the output HMM state label by 3 frames so as to use future frames to
help LSTM make better predictions for the current frame. All exper-
iments were conducted using the Computational Networks toolkit
(CNTK) ([27]). Table 1 gives the comparison of DNN model and
LSTM-RNN model. LSTM-RNN outperforms DNN with a strong
10.3% WERR on the large Cortana test set and 11.0% on the 50-
speaker set.

Table 1. WERs (in %) of DNN and LSTM-RNN models.
model #parameters

(million)
Cortana-test spks50-test

DNN 35.2 15.73 22.85
LSTM-RNN 20.2 14.11 20.34

4.2. Speaker Adaptation of LSTM RNN models

We first investigate the role of KLD regularization for LSTM adap-
tation. Table 2 shows the results of adapting the full LSTM network,
on the 10-speaker dev set. Without regularization, only 5.6% WERR
is obtained but with a regularization weight of 0.2, we get 13.2%
WERR. This clearly shows the importance of regularization. Figure
2 shows WERR over SI LSTM model when adapting the recurrent
projection matrix in the last layer (P(4)). Again we can see with
a proper degree of regularization, significantly more improvement
can be obtained even with adapting only a single matrix. Without
regularization, 7.3% WERR is obtained, but with ρ = 0.3, 12.6%
WERR is obtained on the 10-speaker dev set. We notice that with
ρ = 1.0, which means the training target is completely determined
by the baseline model and any new information from the adapta-
tion data is ignored. This, to no surprise, causes regression. We use
KLD-regularization in following experiments.

Table 2. Adapting full model with different regularization. Numbers
in the brackets are the WERRs (%) compared with baseline.

model WER%
SI-LSTM 24.9
ρ = 0.0 23.5 (5.6)
ρ = 0.2 21.6 (13.2)
ρ = 0.5 21.9 (12.0)

4.2.1. Supervised vs. Unsupervised Adaptation

Another question we want to answer is that as a sequential model
in nature, whether LSTM-RNN is more sensitive to training target
errors. Presumably a training target error not only affect the current
frame, it will also propagate to following frames for RNN model
training. We compared supervised adaptation (with human transcrip-
tion) and unsupervised adaptation (with a real production recognizer

Fig. 2. WERR% of adapting 4th LSTM layer projection matrix with
different KLD-regularization weights on the 10-speaker set.

Table 3. Supervised vs. unsupervised speaker adaptation. Numbers
are WERRs(%) over the unadapted model, on spks50-test set.

mode / Model LSTM DNN
unsupervised 9.1 11.5
supervised 15.1 19.5

generated hypothesis as transcription, the recognizer used a higher
quality DNN model and language model) of the same projection ma-
trix (P(4)) as above, but on the 50-speaker set. Results are given
in Table 3. We can clearly see the large gap between supervised
and unsupervised adaptation (15.1% WERR vs. 9.1% WERR) for
LSTM adaptation. Results of DNN model adaptation on the same
speakers (though a different DNN model, same structure but trained
on more data) were also given in the table (19.5% WERR vs 11.5%
WERR). In both LSTM and DNN models, supervised adaptation de-
livers nearly 70% more gain over unsupervised adaptation. Although
from these numbers it remains unclear whether LSTM adaptation is
more sensitive to training target errors, it would be worthwhile to in-
vestigate methods (e.g. using confidence score, user feedback such
as click-through [28]) to bridge the large gap between supervised
and unsupervised adaptation. Comparing along the horizontal line,
we can see DNN speaker adaptation gives more improvement than
LSTM adaptation. This seems to suggest that LSTM models already
capture and normalize some of the speaker characteristics, therefore
less mismatch between training and testing speakers. As transcrib-
ing data for every user is not practical, we will focus on unsupervised
speaker adaptation in following experiments.

4.2.2. Adapting Existing Network Components

We try to find and adapt the most effective component to match the
test speaker. We begin with adapting the softmax layer and the pro-
jection weight matrix in each LSTM layer. Results (in Table 4) are
on spks50-test set. We can see simply adapting the softmax layer
matrix gives a descent gain of 7.7% WERR. However one prob-
lem with this approach is that only connections to the seen units in
the adaptation data will be updated. Adapting layers below softmax
usually leads to better generalization. A 9.1% WERR is obtained
by adapting the top hidden layer projection matrix. One distinct
observation is that adapting the projection matrix from within the
top LSTM layer to within the bottom LSTM layer becomes progres-
sively less effective. We consistently observe this pattern in our ex-
periments. This is different from DNN, where both [29] and [30, 31]
show a U-shape curve for adaptation at different DNN layer. Another
remark is that the output from projection not only feeds to the next
layer as input, it also feeds to the same hidden layer (recurrent) at
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Table 4. Adapting softmax layer matrix and projection matrices in
different layers. WERRs are improvement over baseline in Table 1.

Adapted
Param.

W P(4) P(3) P(2) P(1)

WER (%) 18.77 18.50 19.01 19.22 19.89
WERR (%) 7.7 9.1 6.6 5.5 2.2

Table 5. Adapting component matrices that controls the gates and
the LSTM cell update in the 4-th layer. Results are on the spks50-test
set.

Param. W
(4)
ch W

(4)
oh W

(4)
fh W

(4)
ih

WER(%) 18.59 18.69 19.01 19.32
WERR(%) 8.5 8.1 6.6 5.0

Param. W
(4)
cx W

(4)
ox W

(4)
fx W

(4)
ix

WER(%) 19.23 18.90 18.80 19.50
WERR(%) 5.4 7.1 7.6 4.1

next frame. Our observation is different from [26] where it is shown
that if adaptation occurs inside the loop, it is much less effective.

Now we explore adaptation of each weight matrix inside the top
LSTM layer. Results are given in Table 5. Note that all these ma-
trices have the same size (1024x512). We can see that it is more
effective to adapt the weight matrices from the hidden layer activa-
tions back to those gates than the input-to-gates matrices. Adapting
how much past information back into the cell (W(4)

ch ) gives the most
gain (8.5% WERR) while adapting current input to the cell is much
less effective (5.4% WERR), suggesting that the sequential nature
of the model indeed can capture temporal dynamics, which carries
speaker characteristics to some degree (e.g. speaking rate and style).
Among the three gates, adapting output gate is the most effective
(7-8% WERR), while adapting input gate is the least effective (only
4-5% WERR).

Adapting combinations of multiple weight matrices (e.g. all ma-
trices to each gate, respectively) on the dev set does not show extra
gain over the best single matrix and therefore is not reported. We
also tried adapting the matrices for the peephole connections (note
that these matrices are diagonal). It does not show any gain by adapt-
ing them alone, or add extra gain when combining with other full
weight matrices. Same for adapting the bias vectors. We also ob-
serve that on the dev set, adapting lower layer LSTM cell internal
matrices gives less gain than adapting those in the top LSTM layer.

4.2.3. Adapting Inserted Linear Layer

We insert a speaker-specific linear transform on top of each LSTM
layer to transform the hidden activations. Table 6 gives the results.
We see a similar pattern that making speaker specific transformation
in the higher part of the network is more beneficial. Adapting the
transformation inserted at the top layer gives the best improvement
(8.2% WERR), but there is very little gain by adapting the trans-
formation inserted at the bottom layer. We also tried adapting the
input features by inserting a speaker-specific linear transformation
between the input and the first layer, it did not work. This is differ-
ent from the observation in [26] where the input feature transform
(IFT) method gave small (3-4% WERR) gain for speaker indepen-
dent features. One reason could be that our network is deeper (4
LSTM layers instead of 2), the bottom layer suffers more from gra-
dient vanishing. Comparing adapting the transformation inserted at
the top layer with adapting P(4) in Table 4, we can see that adapta-
tion inside the recurrent loop gives slightly better performance (8.2%
vs 9.1% WERR).

Table 6. Adapting affine transforms inserted at different layers. Re-
sults are on the spks50-test set.

Inserted at layer 4 3 2 1
WER (%) 18.68 18.96 19.06 19.89

WERR (%) 8.2 6.8 6.3 2.2

4.2.4. Asymptotic Analysis

In this study we vary the amount of adaptation data per speaker and
compare WERR on the fixed test set. This is a different data set
containing 13 speakers with 600 human transcribed utterances. We
keep 50 utterances per speaker for testing. P(4) matrix is adapted in
supervised mode 1. Results are shown in Figure 3. We can see that
more data gives better performance, and it saturates at around 100-
300 utterances. With only 10 utterances, adaptation gives very little
gain, but with 400 utterances it cuts nearly half of the errors. It also
suggests that for power users we should keep accumulating data until
about 400 utterances to get the most benefit before we slide the data
window to keep freshness of adaptation data. It is also interesting to
see a sharp WERR increase from 50 utterances to 75 and 100.

Fig. 3. Asymptotic behavior of supervised LSTM model adaptation:
WERR(%) versus the number of adaptation utterances.

5. CONCLUSIONS AND FUTURE WORK

We summarize this work with a few conclusions: (a) KLD-based
regularization is crucial to obtain good performance in speaker adap-
tation with little data; (b) Unlike DNN model where intermediate
layer adaptation is more effective than other layers, for stacked
LSTM-RNN model, adapting top hidden layers is clearly more
effective than adapting lower layers. Adapting input feature trans-
formation layer does not work for deeply-stacked LSTM model; (c)
Both adapting existing network components and adapting inserted
speaker-dependent layer are effective; (d) Adapting LSTM cell in-
ternal matrices are effective, among which adapting the projection
weight matrix and hidden activations to cell internal memory are
the most effective; adapting the top layer projection matrix gives a
large improvement of 9.1% WERR with only 50 unsupervised ut-
terances; (e) Asymptotic analysis suggests that we can start building
a user specific model with as few as 25 utterances, and sliding the
data window once the amount of data is over 400 utterances. For
our future work, we will investigate ways to build more compact
speaker-dependent components, and reduce the WERR gap between
supervised and unsupervised adaptation.

1The recognizer-generated hypotheses for these data were not available at
the time this study was performed.
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