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ABSTRACT

Recently, a Hybrid DNN-HMM recognizer trained with the Speaker
Adaptive Training (SAT) concept was successfully modified to a
more effective speaker-adaptation-oriented recognizer whose DNN
front-end adopted a Linear Transformation Network (LTN) Speaker
Dependent (SD) module. However, the size of SD modules is still
large, which incurs high storage costs and the risk of over-training.
To alleviate this problem, we analyze the characteristics of an LTN
module by focusing on the relation between its size and its feature-
representation capability. Moreover, we propose a new SAT-based
scheme for reducing the LTN size using SVD-based matrix compres-
sion. Evaluation experiments on the TED Talks corpus prove that our
LTN size-reduction scheme not only maintains the adaptation per-
formance of the original LTN-embedded, SAT-based DNN-HMM
recognizer but also further increases it especially in cases where the
speech data available for adaptation training are severely limited.

Index Terms— Speaker Adaptive Training, Deep Neural Net-
work, Linear Transformation Network

1. INTRODUCTION

Speaker adaptation is one of the key technologies needed to achieve
high-performance speech recognition. Its various embodiments have
been vigorously investigated for the increasingly popular Hybrid
DNN-HMM speech recognizers [1-17]. Among those embodi-
ments, our method [1] demonstrated the effectiveness of the idea
of embedding speaker-dependent (SD) modules into a large-scale
DNN front-end of a Hybrid DNN-HMM recognizer and then train-
ing the DNN part based on the Speaker Adaptive Training (SAT)
concept [18]. In addition, by adopting a Linear Transformation
Network (LTN) [19-21], the method was successfully upgraded to
a SAT-based Hybrid DNN-HMM recognizer whose SD module was
defined with LTN (called SAT-DNN-LTN in this paper) [2].

In real-world situations where the amount of available data is
finite, large-scale networks easily suffer from the over-training prob-
lem. Trained networks generally work for the data in hand but often
fail for unseen data. This problematic phenomenon becomes more
serious in such cases where only a severely limited amount of data is
available in the speaker adaptation stage. In our previous methods,
such as SAT-DNN-LTN [2], this problem was effectively controlled
using the regularization concept. Nevertheless, the size of the used
SD module is still large, and its reduction is obviously desirable be-
cause a small SD module further decreases the risk of over-training
and reduces computational load as well as storage cost. Motivated
by this understanding, we propose in this paper a new technique for
reducing the size of the DNN front-end, or more precisely the size of
the LTN SD module, in our latest SAT-DNN-LTN method without
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degradation of its classification power. Note that an LTN SD module
is prepared for every training/target speaker and thus its computa-
tional and storage costs are high; furthermore, the size of the SD
module should be strictly constrained due to the limited amount of
speech data used in the speaker adaptation stage.

Several techniques for alleviating over-training by reducing the
adaptable parameter size of LTN have been investigated, focusing
on the sharing or restriction of the adaptable parameters [3-5]. In
addition, Singular Value Decomposition (SVD)-based low-rank ma-
trix conversion has also been investigated to reduce the number of
adaptation parameters [6-8]. However, the best choice among these
techniques and, more importantly, the relation between the size of
adaptable parameters and their feature-representation capability in
the LTN have not yet been clarified. Consequently, in this paper, we
first theoretically analyze this relation and next propose, based on
analysis results, a new SAT-based scheme for reducing the size of
LTN while maintaining its feature-representation power. Evaluation
experiments prove that our LTN size-reduction scheme not only
maintains the adaptation performance of the original SAT-DNN-
LTN recognizer but also further improves it even in cases where the
speech data for adaptation are severely restricted.

2. PREVIOUS WORK: SAT-BASED HYBRID DNN-HMM
RECOGNIZER EMBEDDING LTN SPEAKER-DEPENDENT
MODULES

2.1. Overview

The SAT-DNN-LTN speech recognizer, which is a baseline for our
development of an LTN size-reduction scheme in this paper, consists
of the front-end DNN and the back-end HMM, and it is character-
ized by the LTN SD module that is switched for every speaker in the
DNN part [2]. The back-end HMM is first designed using the GMM
probability outputs estimated in the discriminative training using the
mutual information loss, and it is used to produce the senone state
allocation information for the SAT-based DNN optimization that is
conducted under the cross entropy (CE) minimization criterion. Af-
ter this SAT-based optimization of the whole DNN part, only the
LTN SD module is replaced for a new target speaker and it is adapted
using his/her speech data in the adaptation stage. In the successive
paragraphs, we review the training procedures for the DNN part. The
details of the remainder are shown in the literature [2].

Figure 1 illustrates the structure of the DNN part of SAT-DNN-
LTN and the SAT-based training procedure. In the figure, we assume
that our DNN has 7 layers {L;;1 = 0, ..., 6}, and for simplicity, no
biases are depicted. The LTN SD module can be inserted in any of
the layers from L; to Le. As an example, we illustrate the case where
the LTN module is inserted in Ly (the LTN layer is denoted by AL>).
The figure also schematically illustrates the SAT-based procedure

ICASSP 2016



g
: W, W3 W, W5 Wy
5

Speaker S

A3

AL,

S

A

20

L LI L Ly Ly Ly Lg

vy

Speaker 1 m- gg
speaker2] (O30
%)

o)

Fig. 1. DNN structure and SAT-based training procedure for SAT-
DNN-LTN recognizer.

where SD modules {A3;s = 1,---,S} are switched along with
the selection of training speaker, where A3 is the LTN matrix for
training speaker s and S is the number of training speakers.

For explanation purposes, we denote the layer in which an LTN
SD module is inserted by L;g,. Then, the computational procedure
for the SD module layer is formulated as follows:

Zig, = U(WZSD (Aigpzigp—1 + arg,) + szD)
= U(WZSDZISD71 + Blsn)v (D

where Wy, is the DNN’s weight matrix in Ly, byg, is the DNN’s
bias vector in L;, o(-) is the activation function, z;g, is the output
from L;g, Ay, is the LTN’s weight matrix in L;g,, a;g, is the LTN’s

bias vector in Ly, Wlsn Wi, Ay, and szD W aig, +big,-

2.2. Speaker Adaptive Training step

In the SAT procedure, we first initialize the DNN part by setting the
network parameters of SI-DNN to {W;,b;}(l = 1,---, L), where
L is the number of DNN layers excepting the input layer. Next,
we insert the LTN SD module for training speaker s, of which the
LTN weight matrix and bias vector are represented by A} and aj,
respectively, into L;g, and train the LTN-inserted DNN in the CE
minimization framework. We then repeat this SD module insertion
and training along with changing training speakers from s = 1 to
s = S randomly. This SAT procedure is formulated as follows:

——SDs __sD:
(A Alswazsns) =
arg min E(A,Alsgjs,a?;s) + BR(A%?,S, zssl?;)» 2
(A ASDS a8D5) 2

where A = {W1,--- , W, by, e

lsn} alssl?)s ={aj,, -, alSSD}, E is the accumulated CE loss func-
tion, R is a regularization term based on Lz norm [2], 3 is its reg-
ularization coefficient, and such overlined parameters as A are the

trained state of such corresponding parameter as A.

SDs 1
abL}7A :{ALSDv'“a

2.3. Speaker adaptation step

In the speaker adaptation step, we first remove the SD modules for
training speakers, i.e., ASD“ and aSD‘ Then, inserting a new LTN
SD module for target speaker t into LlSD, we train only the inserted
SD module whose trainable parameters are Al o and alSD, using the
speech data of ¢. This adaptation procedure is formulated as follows:

——t
(AZSD7afSD) =

arg min E(A, Alsn’ afSD) —+
)

2 R(Alyaly). B

a
(A ZSD’ Isp

Note that the trained DNN parameter A is included in E but fixed
in the minimization.

3. PROPOSED METHOD: BOTTLENECK LTN
ADAPTATION WITH SVD-BASED MATRIX
COMPRESSION

3.1. Property analysis of LTN-based adaptation scheme

To prepare for matrix/vector manipulation, we re-express the train-
able matrices/vectors of DNN and LTN as follows: V/\\HSD =[wi---
{’\VNLSD71]’ Wi, = [wi-- ‘WNLSD71]’ Ay, = lon- "C!lenfl}7
Wy = [Wry - W ] Wy = [wi - wny ] e = feng
aNlSD_lj]T, where Ny, is the number of nodes in L;g,, T is trans-
pose. Strictly speaking, such column vectors as w; should have an
index that expresses its corresponding insertion layer, as with wé-SD,
but for simplicity, we omit it.

Then, through simple matrix/vector manipulations, we reach the

following relation: Nigy—1

Z Qi Wi 4
i=1

Here, we can easily find that the relation w; € S(W,,) holds,
where S(W g, ) is the column space spanned by the column vectors
of Wy, . Similarly, we can obtain the following bias vector relation:
Wigpai, € S(Wyg,). Accordingly, the potential adaptability of
LTN, or in other words, the size of the parameter space searched by
LTN, is determined by the dimension of S(Wg,), that is the real
rank of W, . A question arising here concerns the effective rank of
W, If it is smaller than the real rank of W, it is fundamentally
possible to construct a low-dimensional parameter space that has the
same feature-representation capability as S(W g, ). Then, because
such use of a smaller number of basis vectors reduces the number
of adaptable parameters, the new basis vectors, or the new smaller
number of parameters, are expected to stably increase the effect of
speaker adaptation, especially in cases where the available speech
data for adaptation training are severely limited.

3.2. Low rank approximation of weight matrix using SVD

To find the above (smaller number of) basis vectors, we consider
the application of SVD to the weight matrix of the SD module layer.
For notation simplicity, omitting SD module layer index lsp, we con-
sider weight matrix W (€ R™*"™) in this subsection. Then, W is
decomposed as W = USVT, where 3 (¢ R™*™) is the rectan-
gular diagonal matrix whose diagonal elements are singular values
oi,and U (€ R™*™)and V (€ R™*") are the orthogonal matrices
produced by SVD. In the same way, for matrix W whose rank is &
(< rank W), we obtain W = UEVT, where & (€ R***) is the
diagonal matrix produced by retaining the k largest singular value
elements (while removing the remainder) in X2, U (€ R™*%) is the
matrix produced by retaining only the k£ column vectors of U, each
corresponding to the k largest singular values, and V (€ R™**) is
the matrix that is similarly produced from V. Finally, using W, we
can obtain the following approximation of W:

W=UsV'~UsV' =W, )
Eq. (5) shows that the space spanned by the column vectors of W
can be approximated by the & basis vectors of U.
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Fig. 2. Adaptation procedure consisting of SVD-based weight

matrix-size reduction and bottleneck LTN insertion. For simplicity,
no biases are depicted.

3.3. Adaption procedure using bottleneck LTN

From the results of 3.1 and 3.2, we propose a new adaptation scheme,
which adopts a size-reduced LTN SD module, for improving the
SAT-DNN-LTN recognizer. The proposed scheme is illustrated in
Figure 2 and formalized as follows:

(i) It first conducts the SAT-based training of the entire DNN,
based on the procedure in 2.2.

(ii) It next approximates, with the SVD-based matrix decompo-
sition, the werght matrix of SD module Wlsn as Wy, =

Ulso Elsp Vlsn Only the £ basis vectors, which correspond
to the k largest singular values of W, are selected in ElSD,
and therefore Wlsn is approxnnately replaced by the bottle-
neck network Ulso by Isp Vi o

(iii) It inserts a new small-sized LTN into the bottleneck SD mod-
ule layer whose size (number of nodes) is reduced from n
to k. This situation is illustrated in the right-side picture in
Figure 2. To distinguish this small-sized LTN from the LTN
originally used in the SAT-DNN-LTN framework, we refer to
this newly inserted LTN as bottleneck LT N, and denote it by
weight matrix At’“D and bias vector a . Accordingly, we
also refer to the layer into which the bottleneck LTN is in-
serted as bottleneck layer, with bottleneck size for k. Then,
the outputs from SD module layer L, are given as follows:

Zig, = O'(ileD ilSD (A?:Dvajzlm_l + alf:D) + blSD) . (6)

(iv) It finally adapts only the bottleneck LTN using the speech
data of a target speaker.

In the above scheme definition, we inserted the bottleneck
LTN between quD and Elsn (See Figure 2 and (6)). However, in

principle, it can also be inserted between Elso and ULSD. We pre-
experimentally investigated both ways of insertion and found that
the way of (6) worked more stably than its counterpart. Therefore,
we adopt it in this paper.

3.4. SAT-based DNN retraining using bottleneck LTN

Based on the definition of bottleneck LTN, it is expected to funda-
mentally retain the same degree of feature-representation capability
as the original weight matrix W g, has, provided its size (i.e., bot-
tleneck size) exceeds a certain necessary level. However, removing
the basis vectors, which correspond to small singular values, pos-
sibly makes the capability of UlsbzlSDAZSDVZSD lower than that

of Wi, Ayg,; this is because if those singular values are not truly
zero, their corresponding basis vectors actually contribute to widen-
ing the adaptable parameter space. Therefore, the simple size reduc-
tion achieved by letting only the large singular value basis vectors
remain may not necessarily be sufficient for initializing the bottle-
neck LTN for the successive adaptation; moreover, if needed, some
countermeasures should be added to solve this insufficiency. One
possible solution is to re-conduct the SAT-based training of the en-
tire DNN part between (ii) and (iii) in our scheme shown above. The

SAT-based DNN training here is basically the same as that in the
original SAT-DNN-LTN recognizer, with the only difference being
that the training here involves the small-sized bottleneck LTNs. Note
that, similar to the full-sized LTN in the SAT-DNN-LTN framework,
the bottleneck LTN is switched along with the speech data selection
for every training speaker. This additional SAT procedure will cor-
rect the degradation of the SAT concept caused by the bottleneck
LTN insertion that deteriorates the SAT-optimized SD module.

4. EXPERIMENTS
4.1. Conditions

We tested our proposed scheme under the supervised adaptation se-
tups in the same experiment environments as in our previous stud-
ies on the original SAT-DNN and SAT-DNN-LTN recognizers [1,2].
We prepared three datasets: training (300 speakers), validation (10
speakers), and testing (28 speakers). The total length of the train-
ing data was about 75 hours (although we previously reported 150
hours [1,2], it should have read 75 hours). The validation data were
used for setting hyper-parameters. The average length of the testing
data was about 8.5 minutes.

The 39-dimensional acoustic feature vector, which consisted of
MFCCs, log-power, and their first and second derivative, was con-
catenated to the 429 (39 x 11)-dimensional input to DNN. The DNN
used had 7 layers and consisted of 429 input nodes, 4909 output
nodes, and 2048 nodes in every hidden layer.

For comparison purposes, following our previous training proce-
dures [1, 2], we first developed the baseline SI-DNN recognizer and
the SAT-DNN-LTN recognizer that had no SVD-based bottleneck
layer. Then, using the above SI-DNN and SAT-DNN-LTN recogniz-
ers as baselines, we also developed the following recognizers:

(a-1) SI-SVD: developed by replacing the SD module layer of SI-
DNN with an SVD-based low-rank weight matrix.

(a-2) SI-SVD-RET: developed by reapplying the SI training to SI-
SVD.

(b-1) SAT-SVD: developed by replacing the SD module layer of
SAT-DNN-LTN with an SVD-based low-rank weight matrix.

(b-2) SAT-SVD-RESAT: developed by reapplying the SAT-based
training to SAT-SVD, as described in 3.4.

(c-1) SA-SI-SVD, SA-SI-SVD-RET!, SA-SAT-SVD, and SA-
SAT-SVD-RESAT: Prefix SA indicates that the correspond-
ing recognizers were speaker-adapted. The adaptation was
done using the bottleneck LTN inserted into the SD module
layer.

In the experiments, we allocated the SD module only to the layer
L2 (Isp = 2), which was shown to be the most effective for the SD
module insertion [2]. We also set all other training conditions in the
same way as in the previous experiment [2].

4.2. Results: Properties of LTN-based adaptation

Figure 3 shows the word error rates (WERs) of three types of recog-
nizers, i.e., SI-SVD, SA-SI-SVD, and SA-SAT-SVD. The rates were
obtained along with the different bottleneck sizes of 64, 128, 256,
512, 1024, and 2048; each of the rates was the average of the results
obtained through the four-times cross-validation over the speech data
of all 28 testing speakers. The WERs of SA-SI-SVD and SA-SAT-
SVD, at the right-side of the figure, were exactly the same as those
of SA-SI-LTN and SA-SAT-LTN (for these two, the speaker adapta-
tion was done without SVD-based matrix conversion), respectively.

ISA-SI-SVD-RET basically corresponds to the recognizer in [6], al-
though there are such small differences as the positioning of the SD modules.
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Fig. 3. Relationship between bottleneck size and recognition perfor-
mance (word error rate [%]).

Note that in these cases, k was kept to 2048, although W2 was de-
composed based on SVD. As theoretically expected, SVD did not
change the feature-representation capability of the matrix when all
of the decomposed basis vectors were maintained. Figure 3 also
shows that the original 2048-dimensional SD module matrix W
can be sufficiently approximated by such low-rank matrices as the
512-dimensional matrix: The WERs of all three recognizers had lit-
tle degradation until their bottleneck sizes were reduced to 512. The
results clearly support our analysis in 3.1 that the effective rank of
‘W, is rather low and the bottleneck LTN having an appropriately
selected size can sufficiently retain the adaptation capability of the
original high-dimension matrix. Due to space limitations, we omit
the results of the other recognizers shown in the list of 4.1 but they
showed the same trend as in Figure 3.

4.3. Results: Adaptation using a small amount of speech data

As discussed in 3.1 and 3.4, the use of the bottleneck LTN may have
a conflicting two-side effect. Its adaptable parameter reduction pos-
sibly increases the adaptability of SD modules, especially over the
limited amount of adaptation data, but it also raise the danger of
fundamentally decreasing the adaptability. To clarify this effect, we
conducted adaptation experiments using two different sizes of bot-
tleneck LTNs: one with k£ = 512 and the other with £ = 2048. From
the results in 4.2, the bottleneck LTN with k& = 512 was shown to
retain the representation capability of the original 2048-dimensional
weight matrix W, while the bottleneck LTN with & = 2048 was
also shown to be equivalent to W. Note that the bottleneck LTN
with k = 2048 was produced with SVD but actually its structure was
not a bottleneck. The experiment was conducted over the speech
data, each longer than 6 minutes, of 18 testing speakers; for each
testing (adaptation target) speaker, his/her first 3 minutes of utter-
ances were reserved for adaptation, and the data of the remaining
time were used for testing.

Table 1 shows the size conditions and gained WERs ([%]) of the
evaluated recognizers. In the table, for each recognizer, we show
the bottleneck size (bn size), the number of adaptable parameters of
the SD module (# param), and the WERs for 4 different lengths of
adaptation speech data, i.e., 180, 60, 30, and 15 seconds. Note that
the length of testing speech data was set to the fixed value described
in the above paragraph. Because the SI-SVD and SI-SVD-RET rec-
ognizers did not have the speaker adaptation mechanism, the same
WERSs gained without the adaptation are listed in all of the corre-
sponding columns.

From the table, we can make three observations:

(i) The SAT-based recognizer retrained with SAT (SA-SAT-
SVD-RESAT with k£ = 512) achieved the best WERs (bold-
faced scores) for all of the adaptation speech data lengths,
although the number of the adaptation parameters was only
6.25% of the original 2048-dimensional weight matrix.

Table 1. Experimental results (parameter sizes and word error rates
[%]) obtained with supervised adaptation using different amounts of
adaptation data.

‘ recognizer [ bnsize [ # param [180s [ 60s [ 30s [ 155 |
SI-SVD 2048 42M 24.0 | 24.0 | 24.0 | 24.0
SI-SVD 512 0.26M | 24.1 | 24.1 | 24.1 | 24.1
SA-SI-SVD 2048 42 M 18.8 | 20.3 | 21.1 | 21.5
SA-SI-SVD 512 026 M | 189 | 204 | 21.3 | 21.7
SA-SAT-SVD 2048 42M 17.8 | 19.3 | 20.5 | 21.3
SA-SAT-SVD 512 026M | 18.0 | 19.5 | 204 | 21.3
SI-SVD-RET 512 026 M | 24.0 | 24.0 | 24.0 | 240
SA-SI-SVD-RET 512 0.26 M 18.9 | 20.2 | 21.3 | 21.7
SA-SAT-SVD-RESAT 512 026 M | 17.6 | 189 | 204 | 20.8

(i) The SAT-based recognizer (SA-SAT-SVD) constantly outper-
formed its counterpart SI-based recognizer (SA-SI-SVD) for
all of the settings of adaptation speech data lengths and bot-
tleneck sizes.

(iii) The SD module size reduction (k = 2048 — k = 512) basi-
cally decreases the adaptation capability of its baseline non-
reduced module in both the SI- and SAT-based recognizers.

Similarly to our approach, SVD-based matrix approximation has
been studied in recent works with the aim of reducing the adap-
tation parameter size [6-8]. However, it was not fully clarified
whether adaptation incorporating the parameter-size reduction
achieved greater adaptation performance compared to adaptation
without such size reduction, especially in cases where the speech
data available for adaptation training were severely limited. Our
results show that a simple use of SVD-based size reduction is not
sufficient for improving this performance, but our novel SAT-based
reinitialization procedure for the DNN front-end clearly helps the
SAT-based bottleneck LTN to boost its adaptation power. In addi-
tion to the SAT-based reinitialization, we actually examined the SI
retraining for the SI-SVD recognizer, but this alternative reinitializa-
tion was not effective for increasing the adaptation performances of
the SA-SI-SVD recognizer. The difference in reinitialization effect
probably arises from the training difference that the SAT-based ap-
proach reinitializes the bottleneck LTN together with the other DNN
part in order to increase the adaptation capability of the LTN module
but the SI-based approach gives no consideration to the adaptation.

5. CONCLUSION

In this paper, we theoretically analyzed the role of the SD mod-
ule weight matrix in representing the capability of speaker adapta-
tion, and based on the analysis results, we proposed the LTN-based
bottleneck speaker adaptation scheme for our previous SAT-DNN-
LTN recognizer. We then elaborated its effectiveness in a difficult
TED Talks task, and successfully demonstrated its ability to im-
prove WERs. Specifically, our adaptation scheme improved, using
a radically reduced SD module of only 6.25% of its original size,
the WERs of the baseline SAT-DNN-LTN recognizer, even in cases
where a severely limited amount of adaptation data was available.

For the SAT-based recognizer, we applied the SVD-based
matrix-size reduction after the SAT-based DNN training. How-
ever, it is possible to apply it before the SAT-based training. This
latter approach will be an interesting future study.
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