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ABSTRACT

This paper presents a method to iteratively estimate phase infor-
mation from speech in the cepstrum domain. It assumes that cor-
rect markings of pitch periods, which may not correspond to glottal
closure instants (GCI), are available and can be used to extract the
smooth spectral envelope of speech. By using this information, the
minimum-phase cepstrum is derived and used as prior information in
a modified version of a previously proposed scheme of complex cep-
strum analysis based on the mean squared error. Experiments with
an emotional database show that the proposed method achieves bet-
ter performance in terms of continuous phase spectrum estimation,
when compared with approaches that rely on accurate GCI mark-
ings and high-resolution phase unwrapping mechanisms. In addi-
tion, similar results to the full optimization of the complex cepstrum
vector are reached, at a lower computational complexity.

Index Terms— Speech representation, speech analysis, phase
estimation

1. INTRODUCTION

Phase-aware speech processing methods have been subject of study
recently, e.g. [1, 2]. More than a decade ago, some researchers in-
vestigated on the usefulness of phase information for speech recogni-
tion, e.g. [3]. In the speech coding area, the best performances have
been obtained by the family of analysis-by-synthesis coders. Basi-
cally, these vocoders usually build a sophisticate excitation signal,
which together with the minimum-phase synthesis filter, attempts to
reproduce the mixed-phase nature of speech [4]. In speech synthe-
sis, more specifically in statistical parametric speech synthesis [5],
although in the past it has been implied that the use of phase does
not result in better synthesized speech quality due to the nature of
statistical machines based on hidden Markov models (HMMs), re-
cent advances in deep learning for text-to-speech (TTS) [6, 7] have
create new frameworks in which the inclusion of phase information
can lead to improvement. In fact, even for HMMs, if phase is prop-
erly estimated it can increase naturalness of synthesized speech, as
shown in our previous work [8]. In many ways, vocoding methods
that attempt to mimic the glottal flow or residual information are in-
deed implicitly moving beyond the minimum-phase assumption and
consequently modeling phase information.

This paper presents an approach to phase estimation through a
modified version of our previous work on complex cepstrum analy-
sis based on mean squared error (MSE) [9]. The complex cepstrum
is a set of parameters that theoretically contains the full information
of the speech signal: amplitude and phase. However, in practical
terms, complex cepstrum estimation is difficult to achieve due to
inaccuracies in speech segmentation, due to the need of the detec-
tion of glottal closure instants (GCI), and phase unwrapping. These
problems have been alleviated by the MSE-based complex cepstrum
analysis. Although the referred scheme had advantages against con-

ventional complex cepstrum analysis such as no need for window-
ing, no need for phase unwrapping, use of soft glottal closure instant
(GCI) marks, and estimation of frame-based cepstra, the method suf-
fered from high computational complexity. The phase estimation
method proposed here is a simplification of the MSE complex cep-
strum analysis scheme. By assuming that the initial pitch marks are
good enough, a good estimation of the spectral envelope of speech
can be obtained, and consequently the minimum-phase cepstrum.
Since the minimum-cepstrum is given, only the all-pass component
of the complex cepstrum, which is related to the residual (or dis-
persion) phase, need to be estimated. The proposed method has the
advantages of the MSE cepstrum analysis when it comes to repre-
senting phase information, at a lower computational complexity.

This paper is organized as follows. Section 2 outlines the
method of complex cepstrum analysis based on the MSE. Section 3
describes the proposed method for phase estimation. Experiments
are shown in Section 4, and the conclusions in Section 5.

2. MSE-BASED COMPLEX CEPSTRUM ANALYSIS

2.1. Complex cepstrum-based speech modeling

In our approach of complex cepstrum-based speech modeling, the
speech signal, s(n), is assumed to be produced by the following
convolution: s(n) = h(n) ∗ e(n), where h(n) is a slowly varying
impulse response representing the effects of the glottal flow, vocal
tract, and lip radiation. The excitation signal, e(n), is composed of
pulses located at the pitch period onset times. The cepstrum of s(n),
ĥ(n), is given by

ĥ(n) =
1

2π

Z π

−π


ln |S (eω)|+ θ(ω)

ff
eωndω, (1)

for −C ≤ n ≤ C, where C is the cepstral order and |S (eω)| and
θ(ω) are respectively the amplitude and phase spectrum of s(n). To
synthesize speech, ĥ(n) must be converted into the impulse response

h(n) =
1

2π

Z π

−π
H (eω) eωndω, (2)

for −P ≤ n ≤ P , P is the impulse response order and H (eω) is
the complex spectrum of h(n). Finally, speech is reconstructed by
making s(n) = h(n) ∗ e(n).

2.2. Iterative estimation of the complex cepstrum

The MSE-based approach overcomes two main issues of conven-
tional complex cepstrum analysis [9]: (1) no need for accurate GCI
markings; (2) no need for phase unwrapping. MSE complex cep-
strum analysis (MSE-CCEP) is performed in a two-step procedure:
(1) estimation of the analysis instants; (2) cepstrum optimization at
the frame level using a gradient method. Fig. 1 illustrates the MSE-
CCEP process.
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Fig. 1. MSE-based complex cepstrum analysis.

2.2.1. Pulse optimization

Pitch period onset position estimation is done by keeping ĥ(n) fixed
while updating the amplitudes, {a0, . . . , aZ−1}, and locations,
{p0, . . . , pZ−1}, of the pulses of e(n), where Z is the number of
pulses. By using matrix notation, the MSE between s(n) and s̃(n)
(Fig. 1), is

ε (az, pz) =
1

N

h
r>z rz − 2azg

>
pz
rz + a2

zg
>
pz
gpz

i
, (3)

with N being the number of samples of s(n),
rz = s−

PZ−1
j=0,j 6=z ajgpj the target signal for pulse z, and

s =

»
0 · · · 0| {z }

P

s (0) · · · s (N − 1) 0 · · · 0| {z }
P

–>
, (4)

gn =

»
0 · · · 0| {z }

n

h>n 0 · · · 0| {z }
N−n−1

–>
, (5)

hn =
ˆ
hn (−P ) · · · hn(P )

˜>
, (6)

where hn contains the impulse response h(n) at the n-th sample
position. The z-th pulse position which minimizes (3) can be found
by making ∂ε(az ,pz)

∂az
= 0,

p̂z = arg max
pz=pz−∆p,...,pz+∆p

`
g>pz
rz
´2

g>pz
gpz

, (7)

where ∆p is the range of samples, and âz =
g>pz

rz

g>pz
gpz

is used to

update all the amplitudes.

2.2.2. Complex cepstrum optimization

For complex cepstrum estimation, the MSE as function of ĥt, where
t is frame index, becomes

ε
“
ĥt
”

=
1

N

»
r>t rt−2rtAtf

“
ĥt
”

+f
“
ĥ>t

”
A>t Atf

“
ĥt
”–
,

(8)

where rt = s−
PT−1
j=0,j 6=tAjf

“
ĥj
”

is the target vector at frame t,

T is the number of frames in the sentence, and ĥt in the t-th complex
cepstrum vector. The (K +M)× (M + 1) matrixAt is given by

At =
ˆ
u−P · · · uP

˜
, (9)

um =

»
0 · · · 0| {z }
P+m

e>t 0 · · · 0| {z }
P−m

–>
, (10)

et =

»
0 · · · 0| {z }

tK

e (tK) · · · e ((t+ 1)K − 1) 0 · · · 0| {z }
N−(t+1)K

–>
, (11)

where et is the excitation vector where only samples belonging to
the t-th frame are non-zero, and K is the number of samples per
frame. The relationship between ht =

ˆ
ht(−P ) · · · ht(P )

˜>
and ĥt =

ˆ
ĥt(−C) · · · ĥt(C)

˜>
can be written as

ht = f
“
ĥt
”

=
1

2L
D2 exp

“
D1ĥt

”
, (12)

where the elements ofD1 andD2 are given respectively by

D1(i, j) =e−ωij , −L+ 1 ≤ i ≤ L,−C ≤ j ≤ C (13)

D2(i, j) =eωji, −P ≤ i ≤ P,−L+ 1 ≤ j ≤ L (14)

with {ω−L+1, . . . , ωL} being the sampled frequencies in the spec-
trum domain, with ω0 = 0, ωL = π, and ω−l = −ωl. A new
estimation for the complex cepstrum can be given by

ĥ
(k+1)
t = ĥ

(k)
t − γ∇̄ĥt

ε
“
ĥt
”
, (15)

where ∇̄ĥt
ε
“
ĥt
”

=
∇
ĥt
ε(ĥt)‚‚‚∇

ĥt
ε(ĥt)

‚‚‚ is the normalized gradient of

ε
“
ĥt
”

with respect to ĥt, γ is a convergence factor, and k is an
iteration index. The gradient vector is given by

∇ĥt
ε
“
ĥt
”

= − 1

NL
D>1 diag

»
exp

“
Dmĥt

”–
D>2 A

>
t

h
rt −Atf

“
ĥt
”i
, (16)

and diag(·) means diagonal matrix made with argument vector.

3. ITERATIVE ESTIMATION OF PHASE USING MSE
COMPLEX CEPSTRUM ANALYSIS

3.1. The idea

In MSE-CCEP, the pulse positions {p0, . . . , pZ−1} are optimized so
that they: (1) are pitch-synchronous; (2) indicate somewhere nearby
the GCIs. In (1), the goal is to remove the F0 effect, so that ĥ(n)
may represent the smooth spectral envelope. In (2), the goal is the
removal of the linear phase component of the phase response.

In many situations it is straightforward to obtain pitch marks, i.e.
indications of pitch periods, rather than exact moments where phase
information can be theoretically retrieved, such as GCIs [10, 11, 12]
or related instants where phase can be estimated [13]. Therefore, by
assuming initial pitch marks, a simplified version of MSE-CCEP can
be used for phase estimation solely. This is done by removing the
contribution of the minimum-phase cepstrum, which is derived from
the amplitude spectrum of speech. For this, minimum-phase/all-pass
factorization of speech in the cepstral domain is used.

For the proposed approach to work, the following conditions re-
garding the excitation signal e(n) in Fig 1 should ideally be met:
(1) there are no missing pulses (no pitch period left unmarked); (2)
positions {p0, . . . , pZ−1} accurately mark pitch periods, although
they may not indicate the GCI. By assuming that, the real cepstrum,
ĥr(n), can be obtained from the amplitude spectrum of speech as
follows

ĥr(n) =
1

2π

Z π

−π
ln |S (eω)| eωndω, (17)

for −C ≤ n ≤ C, and the minimum-phase cepstrum by making

ĥm(n) =

(
ĥr(n), n = 0,

2 ∗ ĥr(n), 0 < n ≤ C,
(18)
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In this case, it is necessary to estimate only the so-defined all-pass
cepstrum, which is the difference between complex and minimum-
phase cepstra

ĥa(n) = ĥ(n)− ĥm(n) =

8><>:
ĥ(n), −C ≤ n < 0,

0, n = 0,

−ĥ(−n), 0 < n ≤ C.
(19)

since ĥm(n) = ĥ(n) + ĥ(−n), for 1 ≤ n ≤ C. The all-pass
cepstrum, {ha(−C), . . . , ha(C)}, represents the residual phase (or
dispersion phase) of speech. The residual phase contains the phase
response of the glottal flow and represents an important factor in
order to achieve high-quality speech parameterization [14].

3.2. Iterative estimation of phase

Fig. 2 shows the proposed method for phase estimation, derived as
a simplification of the MSE-CCEP framework. Basically, the differ-
ences between this method and the one outlined in Section 2 are:

• the minimum-phase cepstrum is calculated directly from nat-
ural speech by using the positions {p0, . . . , pZ−1};

• optimization is done on the all-pass cepstrum, ĥa(n);

• optimized all-pass cepstrum, ĥa(n), and fixed minimum-
phase cepstrum, ĥm(n), are added together to compose the
complex cepstrum, ĥ(n).

Therefore, like in the MSE-CCEP method, phase estimation is per-
formed in a two-step optimization procedure. The first one corre-
sponds to pulse optimization, which is exactly the same scheme as
described in Section 2.2.1, and for this reason will be omitted.
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ĥm(n)

Fig. 2. Proposed method for iterative estimation of phase.

3.2.1. All-pass cepstrum optimization

Since ĥ(n) = ĥm(n) + ĥa(n), from Fig. 2 the MSE between s(n)

ad s̃(n), as function of ĥa,t =
ˆ
ĥa,t(−C) · · · ĥa,t(C)

˜>
, is

ε
“
ĥa,t

”
=

1

N

»
r>t rt − 2rtAtf

“
ĥm,t + ĥa,t

”
+

+ f
“
ĥm,t + ĥa,t

”>
A>t Atf

“
ĥm,t + ĥa,t

”–
. (20)

By exploiting the fact that the all-pass cepstrum is anti-symmetric,
i.e. ĥa(n) = −ĥa(−n), with ĥa(0) = 0, a vector of phase features

can be defined as: φt =
ˆ
ĥa,t(1) · · · ĥa,t(C)

˜>
. By using the

gradient descent approach in order to optimize φt, similarly to the
complex cepstrum optimization case shown in Section 2.2.2, a new
update for vector φt can be given by

φ
(k+1)
t = φ

(k)
t − γ∇̄φtε (φt) , (21)

where ∇̄φtε (φt) =
∇φt

ε(φt)

‖∇φt
ε(φt)‖ is the normalized gradient of

ε
“
ĥa,t

”
with respect to φt, γ is a convergence factor, and k is an

iteration index. The gradient vector this time is

∇ĥt
ε (φt) = − 1

NL
D>a,1 diag

»
exp

„
Dm,1ĥm,t +Da,1φt

«–
D>2 A

>
t

h
rt −Atf

“
ĥm,t + ĥa,t

”i
, (22)

where matrix Dm,1 is the same as D1, but for 0 ≤ j ≤ C, and the
elements ofDa,1 are given by

Da,1(i, j) = −2 sinωij, −L+ 1 ≤ i ≤ L, 1 ≤ j ≤ C. (23)

4. EXPERIMENTS

4.1. Conditions

Some studies suggest that the glottal flow derivative is connected to
the speaker’s voice style or emotion [15, 16]. Although this is true
for the spectral tilt, i.e. the amplitude response of the glottal flow,
here we utilize an emotional database to check the performance of
the proposed algorithm in order to verify whether it works satisfac-
torily for different voice styles. The data comprises 50 sentences
uttered in six different styles: anger, fear, happiness, neutral), sad-
ness, and tenderness. The data was recorded in studio by a female
British actress. The audio was originally sampled at 48 kHz and
down-sampled to 22.05 kHz.

We compared the proposed approach for phase estimation with
two methods: (1) pitch synchronous spectral analysis at the GCI,
retrieved by the DYPSA algorithm [10], followed by high-resolution
phase unwrapping using the simple algorithm shown in [8]; (2)
MSE-CCEP approach [9] outlined in Section 2. For the first method,
anti-symmetric Hann windows were centered at the GCIs, covering
two pitch periods. Then a 4096-point fast Fourier transform (FFT)
was taken to obtain a high-resolution wrapped phase spectrum, and
increase the accuracy of the unwrapping process. For both MSE-
CCEP and proposed algorithm, initialization was done with the
GCIs provided by DYPSA and with complex cepstrum estimated as
in [8]. P and L were set to P = 128 and L = 512 in both methods.

4.2. Evaluation criterion

The evaluation criterion is based on speech signal analysis and re-
construction using original amplitude and estimated phase spectra,
as shown in Fig. 3. In the baseline approach, the phase spectrum is
obtained by unwrapping the principal value of the phase, and then
linear phase term removal. For the MSE-CCEP and proposed ap-
proach, since both methods yield a complex cepstrum at the end1,
the continuous phase response can be retrieved by

θ(ω) = −
CX

n=−C

ĥ(n) sinωn. (24)

1Note that in the proposed method the minimum-phase cepstrum is calcu-
lated initially from natural speech and kept constant during the entire process.
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4.3. Results

Fig. 4 shows the results of the compared methods for the six differ-
ence voice styles: anger (ang), fear (fea), happiness (hap), neutral
(neu), tender (ten), sadness (sad). Note that 10 iterations were used
for MSE-CCEP and proposed method. For sake of visualization, the
values obtained by the baseline are depicted as constant lines across
the iterations. As distortion measure, the segmented signal-to-noise
ratio of voiced frames (SNRseg-v) was used. It can be seen that
while better than the conventional approach for all the styles, the
proposed method achieves performance similar to the MSE-CCEP,
at a lower computational complexity. Interesting to note is that all
the systems performed much better for sad than for ang. This was
expected since phase estimation for highly expressive voices is chal-
lenging. In terms of CPU processing time, the proposed approach
runs in average three times faster than MSE-CCEP. Informal listen-
ings showed that there were no difference between the two methods.

To check if the proposed method was similar to MSE-CCEP in
terms of vocoded speech as well, we used the final complex cepstra
resulted from both methods to derive non-causal impulse responses,
h(n), and F0 and optimized {p0, . . . , pZ−1} to create the excitation
signals, e(n). Then speech was reconstructed by making s̃(n) =
h(n) ∗ e(n). Results in terms of SNRseg-v across 10 iterations are
shown in Fig. 5. In this case it is clear that the MSE-CCEP approach,
which optimizes the entire complex cepstrum vector, achieves better
performance for all the speech styles. This is illustrated in Fig. 6,
which shows amplitude and phase spectra derived from the cepstrum
obtained at the end of the optimization process, in both MSE-CCEP
and proposed method. It can be noticed that the difference comes

mostly from the minimum-phase cepstrum, which is also optimized
together with phase information in MSE-CCEP. This is shown by the
differences in amplitude and minimum-phase spectra of Fig. 6.
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5. CONCLUSIONS

This paper presented an approach for phase estimation based on a
simplified version of our previously published work on MSE com-
plex cepstrum analysis. In the proposed scheme, rather than the full
complex cepstrum vector, only the all-pass cepstrum is optimized.
The idea, however, assumes good enough initial pitch marks in the
sense that they effectively mark pitch periods, with little missing
problems. Experiments on an emotional database showed that the
proposed method achieves much better performance than GCI mark-
ing followed by multi-resolution spectral analysis and phase unwrap-
ping, while reaching similar performance to the full optimization of
to the complex cepstrum with less computational load.
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