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ABSTRACT

Recent research on temporally weighted linear prediction shows that

quasi closed phase (QCP) analysis of speech signals provides bet-

ter modeling of the vocal tract and the glottal source. Quasi closed

phase analysis gives more weightage on the closed phase of the glot-

tal cycle, at the same time deemphasizing the region around the in-

stant of significant excitation which is often poorly predicted. How-

ever, all the traditional analysis techniques including the QCP analy-

sis is performed over short intervals of time. They do not impose any

continuity constraints either on the vocal tract system or the glottal

source. Such constraints are often imposed at a later stage to either

smooth or track the estimated features over time. Time varying lin-

ear prediction (TVLP) provides a framework for modeling speech

with a long-term continuity constraint imposed on the vocal tract

shape. In this paper, we propose a new method for accurate mod-

eling and tracking of the vocal tract resonances by integrating the

advantages of a QCP analysis with that of TVLP. Formant track-

ing experiments show consistent improvement in performance over

traditional LP or TVLP methods under a variety of conditions in-

cluding different voice types and over a wide range of fundamental

frequency.

Index Terms— Quasi closed phase analysis, time varying linear

prediction, weighted linear prediction, formant tracking

1. INTRODUCTION

Linear prediction (LP) analysis of speech signals is widely used

to approximate the speech production apparatus as a source-system

model [1, 2]. The conventional LP modeling gives equal emphasis

towards predicting all the samples within an analysis frame. How-

ever, temporally weighted LP algorithms give differential emphasis

on the samples by defining a weight function on the error signal be-

ing minimized [3–8]. A weight function based on the short-time en-

ergy variations within the glottal cycle provides robustness against

degradations [3–5]. However, such an energy based weight function

does not take into account the presence of impulse-like excitations

within voiced speech, which often leads to high prediction errors.

Quasi closed phase (QCP) analysis of speech tries to address this

problem by designing a weight function that emphasizes the closed

phase of the glottal cycle while at the same time deemphasizing the

region around the instants of significant excitation [7, 8].

Speech signal is conventionally analyzed over short segments

(5-50 ms) with an inherent assumption of quasi stationarity [1]. This

assumption is justified to an extent that the vocal tract apparatus be-

ing a physical inertial system tends to change slowly within such

short time intervals and over adjacent glottal cycles. This natural re-

dundancy built into the speech production apparatus is utilized only

to the extent of estimating an average vocal tract model over a few

adjacent glottal cycles. The continuity of the vocal tract system be-

yond the window sizes of the short-time analysis is seldom utilized.

Some amount of continuity is enforced in this piecewise approxi-

mation of the vocal tract system by overlapping the adjacent seg-

ments of analysis. Time varying linear prediction (TVLP) tries to

bridge this gap by modeling the speech signal over longer intervals

of time by defining the vocal tract model parameters as a function of

time [9–11].

The conventional least squares solution to the LP problem in-

volves minimizing the L2 norm of the excitation source signal ap-

proximated by the prediction error signal [12, 13]. The inherent as-

sumption here is that the excitation signal is a Gaussian process.

However, neither the speech signal nor the excitation signal is Gaus-

sian in nature. Sparsity constraints based on the theory of com-

pressed sensing may be used to utilize the super Gaussian nature

of the excitation signal [14, 15]. This involves minimizing the L0

norm (the number of non-zero elements) of the error signal. How-

ever, due to the non-convex nature of the cost function the L0 norm

is often approximated by a L1 norm optimization which provides a

more tractable convex problem [14]. Also, it has been shown that an

iterative reweighted minimization of the norm can achieve increased

sparsity of error signal and thereby yielding a solution more closer

to L0 norm optimization [15].

In this paper, we propose a new method for accurate modeling

and tracking of the vocal tract resonances which integrates the ad-

vantages of temporally weighted LP, time varying LP and sparse LP.

2. QUASI CLOSED PHASE ANALYSIS

Quasi closed phase analysis of speech signals belongs to the fam-

ily of weighted linear prediction (WLP) methods. WLP analysis

involves minimizing the prediction error by giving a differential em-

phasis to different regions of the signal within a glottal cycle. It is

important to note that the weighting is on the error signal as against

the traditional windowing of the signal for short-time analysis. The

cost function optimized in WLP is given by

E =
∑

n

w[n]e2[n] (1)

where w[n] is the weight function on the error (e[n] = x[n]− x̂[n])
in predicting the current speech sample (x[n]) based on the past p

samples (given by x̂[n] = −
∑p

k=1
akx[n− k]). The prediction

coefficients aks represent the vocal tract system modeled as an all-

pole system of order p. Different weight functions have been pro-

posed in the literature based on different criterion and for different

purposes. Weight functions that follow the short-time energy of the

speech signal within a glottal cycle have been used to increase the

robustness of the analysis against degradations [3, 4, 6]. A weight

4980978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



function inversely proportional to the prediction error signal is often

used in sparse linear prediction analysis to increase the sparsity of

the error signal [14,15]. Another weight function with an attenuated

main excitation (AME) reduces the effect of glottal source on the

vocal tract estimation [8]. The QCP analysis uses a weight function

that combines the advantages of WLP, sparse LP, and AME weight

function. The weight function is designed so as to emphasize the

closed phase region of the glottal cycle while at the same time at-

tenuate the region around the main excitation [7]. Attenuation of the

main excitation automatically imposes sparsity constraints on the er-

ror signal. By defining a continuous weight function on the error sig-

nal the QCP analysis provides a flexible framework to approximate

a closed phase analysis over multiple glottal cycles using either an

autocorrelation-based or a covariance-based formulation.

3. TIME VARYING WEIGHTED LINEAR PREDICTION

The time varying linear prediction (TVLP) formulation is very sim-

ilar to the conventional LP formulation, except that the predictor

coefficients are defined as functions of time instead of being con-

stants. This allows for modeling of the speech signal over intervals

of time longer (> 50ms) than the typical short-time analysis win-

dow lengths. In TVLP, an estimate x̂[n] of the current sample x[n]
is predicted based on the past p samples given by

x̂[n] =

p∑

k=1

ak[n]x[n− k] (2)

where the time varying predictor coefficients {ak[n]}
p

k=1
can be

modeled using different approximations either using a power series

or a trigonometric series [9–11]. In this paper we use the power

series or polynomial approximation of the coefficients given by

ak[n] =

q∑

i=0

bki
n
i
. (3)

A piecewise constant approximation using a zeroth order polynomial

(q = 0) yields the traditional short-time analysis.

The TVLP coefficients are estimated by minimizing the Lm-

norm of the error signal given by

b̂ = argmin
b

||x−Xb||m (4)

where

x = [x[0], x[1], . . . , x[N − 1]]T
N×1

(5)

b = [b10 , b11 , . . . , b1q , . . . , bp0 , bp1 , . . . , bpq ]
T

p(q+1)×1
(6)

X = [X0, X1, . . . , XN−1]
T

N×p(q+1)
and (7)

Xn = [x[n− 1], nx[n− 1], . . . , nq
x[n− 1],

. . . , x[n− p], nx[n− p], . . . , nq
x[n− p]]T

p(q+1)×1
. (8)

The traditional autocorrelation and the least square formulations typ-

ically minimize the L2-norm. L1-norm minimization can also be

used as an alternative, and as a convex approximation of L0-norm

optimization problem, which adds an additional sparsity constraint

on the error signal for better modeling of the excitation source and

vocal tract system [11, 14, 15].

Time varying weighted linear prediction (TVWLP) is analogous

to WLP where the predictor coefficients are estimated by minimizing

a weighted error signal given by

b̂ = argmin
b

W ||x−Xb||m (9)

where W is a diagonal matrix with its diagonal elements corre-

sponding to the weight function defined on the error signal. In sparse

LP literature an iterative reweighted norm minimization approach is

often employed to increase the sparsity of the error signal [15]. A

weight function inversely proportional to the error signal in used to

reestimate the predictor coefficients for the next iteration.

In this paper, we propose to use the QCP weight function within

the TVWLP framework. The resultant QCP analysis using TVWLP

can provide more accurate closed phase estimates of the vocal tract

over multiple glottal cycles with reduced effect of the glottal source.

It also imposes sparsity constraints on the excitation signal, and at

the same time ensures continuity of the vocal tract system.

4. FORMANT TRACKING EXPERIMENTS

The performance of TVLP and TVWLP based QCP analysis meth-

ods in tracking vocal tract resonances is studied in this section. The

initial set of experiments address issues in the conventional TVLP

analysis on the choices of norm function, analysis window size, and

polynomial order for the time varying parameters. Based on these

observations, subsequent experiments compare the performance of

the TVLP and TVWLP methods for different phonation types and

a wide range of fundamental frequency. The performance is evalu-

ated using a variety of data including artificial resonance contours,

synthetic as well as real speech signals using both L2 and L1 norm

minimization. In this paper, we use a linear programming solution

to L1-norm minimization [14] and the least squares solution to the

L2-norm optimization [12].

4.1. Choice of L2 or L1 norm

A comparison between L2 and L1 norm minimization is studied us-

ing an artificial signal as well as real and synthetic speech signals.

4.1.1. Analysis of synthetic signals

Performance of the TVLP methods using either L2 or L1 norm in

tracking artificial resonance tracks is shown in Fig. 1. The resonance

contours are simulated as a sum of three damped chirp signals with

a quadratic sweep in the center frequency with time. The ground

truth resonance tracks (red dashed lines) and the estimated tracks

are shown for different polynomial orders. It can be seen that L2

norm minimization is optimal at an order (q = 3) close but higher

than the actual quadratic nature of the contours which may be nec-

essary due to the complexity of a resonance cross over in the signal.

The performance deteriorates for both lower as well as higher poly-

nomial orders. However, L1 norm optimization leads to consistent

improvement with increasing polynomial order.

4.1.2. Analysis of real speech signals

A qualitative analysis of the TVLP methods on real speech signals

using different norms and polynomial order is presented here. Fig. 2

shows the first three formant contours estimated (red lines) using an

8th order TVLP analysis for different polynomial orders using L2

as well as L1 norm optimization. The analysis window size used is

200 ms. It can be seen that L1 norm minimization seem to track the

reference formant values (green dots) more consistently and accu-

rately with increasing polynomial order, as was the case with simu-

lated resonance contours. Increasing the analysis window size and

the order of polynomial seem to work well for simulated signals, but

with real speech signals convergence and stability issues are often

encountered resulting in poor estimates of the formant tracks. The
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Fig. 1. TVLP analysis on sum of chirp signals with quadratic

sweep. (a) and (b) Estimated resonance contours (solid blue lines)

for varying polynomial order q using L2 and L1 norms, respectively.

The reference contours are shown as dashed red lines. (p, q) =
{(6, 1), . . . , (6, 6)} denotes (LP order, polynomial order). (c) and

(d) Average errors in contour estimation using L2 and L1 norms,

respectively.

L1 norm minimization fails to converge for arbitrary segments of

speech at higher orders and longer window size (300 ms or more).

Similarly L2 norm optimization suffers with the problem of rank

deficient covariance matrices. Advanced numerical methods with

additional constraints on convergence, stability and continuity of the

system parameters would be essential. However using either of the

norms works reasonably well for orders less than 5 and window sizes

up to 300 ms.

It can be seen from Fig. 2 that the estimates (red lines) of lower

formants seem to match and track the reference formant locations

(green dots) better than the weaker higher formants. However, avail-

ability of the real ground truth is a major issue in evaluating the

accuracy of the estimates. For example the estimates of the third for-

mant are biased towards what appears to be a peak at around 2.5 kHz

on the spectrogram at 0 ms. The reference ground truth (green dots)

plotted here are part of the VTR database [16] estimated in a semi-

automated way. Estimates from a short-time autocorrelation based

LP analysis are smoothed and manually corrected against spectro-

graphic evidences. In such a scenario it becomes difficult to deter-

mine which of the two estimates is accurate. In view of the lack of

an authentic ground truth, the accuracy of the proposed methods will

have to be evaluated on synthetic speech utterances.

4.2. Choice of window size and polynomial order

One important issue in time-variant LP modeling is the choice of the

window size and polynomial order used to approximate the predictor

coefficient contours. Longer analysis window sizes are attractive for

efficient parameterization and coding of speech signals but would in-

Fig. 2. TVLP analysis of real speech for different polynomial orders

using L2 (top row) and L1 (bottom row) norms. Estimated and ref-

erence formants are shown by red lines and green dots, respectively.

Fig. 3. Average error in formant estimation (F1, F2 and F3) as a

function of (a) polynomial order and (b) window size.

troduce longer delays. Longer segments require higher polynomial

orders to approximate the contours of the vocal tract model param-

eters better, and can lead to computational problems as mentioned

earlier. However, it is not absolutely essential to analyze speech

over very long segments. Moderate window sizes that can capture

the slow time varying nature of the vocal tract with lower polyno-

mial orders may be a good compromise overall.

Fig. 3 shows the absolute error in formant estimation averaged

over the first three formants of a synthetic speech utterance for dif-

ferent values of polynomial order and window size. Fig. 3(a) shows

the performance of the TVLP methods using L2 and L1 norms for a

fixed window size of 100 ms but with varying polynomial order q. It

can be seen that optimal performance is reached at an order of q = 3
or q = 4 and the performance starts to deteriorate at an order of

q = 5. Fig. 3(b) shows the performance for varying window sizes at

a fixed polynomial order q = 3. It can be seen that the performance

is good at 100 ms or 200 ms, and it deteriorates for longer window

sizes. In the experiments to follow in the remainder of the paper we

use a fixed window size of 100 ms and a polynomial order of q = 3.

4.3. Quasi closed phase TVWLP analysis

Performance of the proposed QCP analysis of speech signals using

TVWLP in formant tracking is evaluated for a variety of conditions.

Four different phonation types (creaky, modal, breathy and whis-
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Fig. 4. Formant estimation error for different phonation types.

pery) and four different ranges of fundamental frequencies (mean

utterance F0 scaled by factors 1.0, 1.5, 2.0 and 2.5) are consid-

ered. The phonation types and the F0 range are controlled by using a

parametric Liljencrants-Fant (LF) model for the glottal source [17].

Speech signals are synthesized by filtering the glottal flow derivative

signal using an all-pole model with known formants and bandwidths

from the VTR database [16]. Ten randomly selected utterances (5

male and 5 female) from the database are synthesized with four dif-

ferent phonation types and four different mean F0. The analysis is

carried out over non-overlapping window segments of 100 ms using

an LP order of p = 8 and a polynomial order of q = 3. A com-

parison with the traditional LP covariance based method (popularly

known as ESPS method [18]) used in the popular open source tool

Wavesurfer [19] is also provided. It should be noted here that the

ESPS method first performs a short-time (49 ms) LP analysis fol-

lowed by a dynamic programming based tracking of formants.

4.3.1. Effect of phonation type

Performance of the TVLP and TVWLP methods for the four dif-

ferent phonation types is shown in Fig. 4. It can be seen that QCP

based TVWLP method minimizing L1 norm performs the best in

most cases. In general, the L1 norm minimization seem to perform

better than using L2 norm. Similarly, the TVWLP methods perform

better than the TVLP methods. Performance of the both TVLP and

TVWLP methods is better than the traditional ESPS method. The

QCP based analysis improves the performance of both L2 as well as

L1 norm based methods consistently for creaky and modal phonation

types. However, QCP analysis seems to yield a mixed performance

for breathy and whispery phonation types which exhibit high open

quotient as well as high spectral tilt. A more careful investigation of

these phonation types is essential to find out the reasons for mixed

performance of the QCP methods.

4.3.2. Effect of fundamental frequency

The four different ranges of fundamental frequency are generated

by scaling the original F0 contour of an utterance by different fac-

tors before synthesizing the speech signal. A modal LF excitation is

Fig. 5. Formant estimation error for different mean F0 values.

Table 1. Overall formant tracking performance in terms of percent-

age deviation averaged over all phonation types and fundamental fre-

quencies.

ESPS TVLP-L2 TVWLP-L2 TVLP-L1 TVWLP-L1

8.74 7.44 5.54 5.18 4.42

generated based on the new F0 contour while retaining the original

rate of formants and hence the speaking rate intact. Performance of

the TVLP and TVWLP methods for all four ranges of F0 values is

shown in Fig. 5. It can be seen that the TVWLP methods provide

consistent improvement over the TVLP methods for both L2 as well

as L1 norm optimization up to a scale factor of 2.0. A mixed per-

formance for the scale factor 2.5 may be due to the new F0 values

moving very close to the first formant. However, L1 norm opti-

mization seem to perform better than minimizing L2 norm in most

cases. The overall performance of all these methods averaged over

all phonation types and F0 ranges is given in Table 1. It can be seen

that QCP based TVWLP-L1 method provides significant improve-

ment over the traditional ESPS method.

5. CONCLUSIONS

A new method for accurate formant tracking using quasi closed

phase analysis of speech signals using time varying weighted linear

prediction was proposed. The proposed QCP-TVWLP method com-

bines the accurate source-system separation capabilities of the QCP

based analysis and the long-term continuity constraints on vocal tract

resonances imposed by TVLP. Optimal parameters for analysis win-

dow size and polynomial order of the time varying LP coefficients

were explored. A moderate window size of 100 to 200 ms and a

polynomial order of 3 to 4 were found to be best suited. Experimen-

tal results show that the proposed QCP-TVWLP methods provide

significant improvement in the formant tracking performance over

TVLP methods, as well as the traditional ESPS method, for different

phonation types and a wide range of fundamental frequency.
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