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ABSTRACT

Recent work has explored deep architectures for learning
acoustic features in an unsupervised or weakly-supervised
way for phone recognition. Here we investigate the role of
the input features, and in particular we test whether standard
mel-scaled filterbanks could be replaced by inherently richer
representations, such as derived from an analytic scattering
spectrum. We use a Siamese network using lexical side in-
formation similar to a well-performing architecture used in
the Zero Resource Speech Challenge (2015), and show a
substantial improvement when the filterbanks are replaced by
scattering features, even though these features yield similar
performance when tested without training. This shows that
unsupervised and weakly-supervised architectures can benefit
from richer features than the traditional ones.

Index Terms— speech recognition, scattering transform,
siamese network, ABnet, ABX

1. INTRODUCTION

In the task of learning an acoustic model, unsupervised sys-
tems are on the rise [1], however the gap between these sys-
tems and the supervised ones remains considerable.

In supervised ASR, standard spectral features such as
mel-filterbanks or MFCCs are often used to represent the
acoustic signal. The emphasis is on improving the supervised
classifier, since a good classifier can compensate for flaws
in the representation. An example of this is the elimination
of noisy and uninformative features. However, in an unsu-
pervised setting, we lack the guidance of the labels to help
a system learn to select features, scale them relative to their
importance in the classification task, and extract useful in-
formation. Unfortunately, unsupervised algorithms are very
sensitive to these drawbacks, hence learning a good acoustic
representation is the key to success for unsupervised speech
recognition.

In previous work, several architectures have been ex-
plored to learn an acoustic model in an unsupervised or
weakly-supervised way [2, 3, 4, 5]. However, regardless
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of the sophistication of these algorithms, their performance
remains inherently limited by the amount of information
available in their input representation.

In this study we investigate the importance of choosing an
appropriate input representation to learn an acoustic model
in an unsupervised or weakly-supervised way. We focus on
one particular model, the ABnet [2, 5], a Siamese network
that learns a phone representation from pairs of words, and
we study the effect of switching its input representation from
mel-filterbanks to the scattering spectrum [6].

Information is lost in the mel-fiterbanks computation pro-
cess, mainly when averaging the spectrogram over the filters,
and this loss of information puts an upper bound on the learn-
ing potential of classifiers that are built on these features. The
untransformed waveform is the richest representation possi-
ble, and some supervised systems are able to learn phonetic
classes directly from it [7]. However, in an unsupervised or
weakly-supervised setting, it would be extremely difficult to
extract information directly from the waveform. Here, we
strike a middle ground by replacing the filterbanks by a deep
scattering spectrum, a representation that has many of the de-
sirable properties of standard spectral features, i.e. they are
stable and can be efficiently exploited by classifiers, while re-
taining more information than filterbanks.

The current study will show that both in a weakly super-
vised setting with gold word-level annotations on the TIMIT
(American English) corpus and in a purely unsupervised
setting on the Buckeye (American English) and NCHLT (Xit-
songa) corpora, combining the scattering spectrum and the
ABnet significantly improves the learned representation, in
terms of its ABX error [8, 9], a score that characterizes the
discriminability of phone classes in the embedding space.
This improvement holds in comparison to an ABnet trained
on standard spectral features, and even in comparison to
supervised systems.

2. METHODS

2.1. Scattering Transform

For a signal x we define the following wavelet transform Wx
as a convolution with a low-pass filter φ and higher frequency
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complex analytic wavelets ψλ1 :

Wx = (x ? φ(t), x ? ψλ1
(t))t∈R,λ1∈Λ1

(1)

We apply a modulus operator to the wavelets coefficients
to remove complex phase and extract envelopes at different
resolutions:

|W |x =
(
x ? φ(t) , |x ? ψλ1(t)|

)
t∈R,λ1∈Λ1

(2)

S0x = x ? φ(t) is locally invariant to translation thanks to
the time averaging φ. This time-averaging loses the high fre-
quency information, which is retrieved in the wavelet modu-
lus coefficients |x ? ψλ1

| . However, these wavelet modulus
coefficients are not invariant to translation, and as for S0 a
local translation invariance is obtained by a time averaging,
which defines a first layer of scattering coefficients:

S1x(t, λ1) = |x ? ψλ1
| ∗ φ(t) (3)

It is shown in [6] that if the wavelets ψλ1
have the same

frequency resolution as the standard mel-filters, then the S1x
coefficients approximate the mel-filterbanks coefficients. Un-
like with the mel-filterbanks computation process, we here
have a strategy to recover the lost information, by passing
the wavelet modulus coefficients |x ? ψλ1 | through a bank of
higher frequency wavelets ψλ2

:

|W2| |x?ψλ1
| =

(
|x?ψλ1

|?φ , ||x?ψλ1
|?ψλ2

|
)
λ2∈Λ2

(4)

This second layer of wavelet modulus coefficients is still
not invariant to translation, hence we average these coeffi-
cients with a low-pass filter φ to derive a second layer of scat-
tering coefficients:

S2x(t, λ1, λ2) = ||x ? ψλ1 | ? ψλ2 | ? φ(t) (5)

Repeating these successive steps of computing invariant
features and retrieving lost information leads to the scattering
spectrum, as seen in Fig. 1, however speech signals are al-
most entirely characterized by the first two layers of the spec-
trum, that is why a two layers spectrum is typically used for
speech representation. It is shown in [6] that this represen-
tation is invariant to translations and stable to deformations,
while keeping more information than the mel-filterbanks co-
efficients.

2.2. ABnet

Siamese networks were first introduced for written signatures
verification [10]. The main intuition behind these architec-
tures is that given an abstract notion of similarity on the data
we can use pairwise relations between samples to learn a rep-
resentation where the distance between the embeddings of ob-
jects will reflect the abstract similarity between these objects.

Fig. 1. A scattering spectrum with two layers.

In other words, we want to learn a mapping µ(X) such that
for a certain similarity metric D in the embedding space we
have D(µ(X1), µ(X2)) small if X1 and X2 are same objects,
and large if they are different. Because of this architecture, the
supervision required by a Siamese network consists of pairs
of samples that are labeled same or different, rather than la-
bels for individual samples.

An ABnet is a particular case of Siamese neural network.
It uses pairs of words to learn a representation of phones.
Once words are paired, the feature frames that constitute them
are aligned with Dynamic Time Warping (DTW) [11] and
make the pairs of samples that are fed to the ABnet. The mo-
tivation for using such lexical feedback comes from the fact
that the lexicon is typically quite sparse in phonetic space.
As a result, two randomly selected words will mismatch in
most of their phonemes. This makes lexical clustering an eas-
ier task than phoneme clustering. In addition, experiments
and computational models in psycholinguistics have shown
that lexical information can help refine phonetic categories
[12, 13].

The ABnet is composed of two copies of the same net-
work, each copy being fed with one of the elements of a pair
of input samples. These identical networks project the sam-
ples into the embedding space, through several hidden layers.
A measure of similarity or distance is then computed between
the two pairs depending on their relation label (same or dif-
ferent), and the error is propagated evenly in the two copies.
An ABnet can be seen in Fig. 2.

3. ABX EVALUATION

The standard way of evaluating features is to train a super-
vised classifier and compare the classification performance to
the performance we get with a similar classifier trained on
other features. However, supervised classifiers can compen-
sate for properties of the features that would constitute con-
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Fig. 2. The ABnet architecture.

siderable flaws in an unsupervised setting (e.g. poor scaling,
uninformative dimensions). Hence, supervised classification
performance obtained on features is not a reliable indicator
of the performance of these features in an unsupervised set-
ting. Rather, we evaluate a different property of the repre-
sentation, its phonetic discriminability, i.e. how well phonetic
classes are separated in the embedding space, since well sepa-
rated classes lead clustering algorithms to discover meaning-
ful clusters. This evaluation is done by computing an ABX
score [8, 9].

An ABX task consists in presenting three stimuli A, B
and X , with A and B belonging to different categories and X
matching the category of either A or B, let us assume in this
example that X belongs to the same category as A. Distances
D(A,X) andD(B,X) are computed in the embedding space
and compared. If D(A,X) < D(B,X) then the score is 1
(success), else it is 0 (failure).

The experiments in this paper are evaluated with a par-
ticular type of ABX task, adapted for speech, the triphone
minimal-pair ABX task. A minimal pair is a pair of sounds,
composed each of three phonemes, that only differ by their
central phoneme (“beg” vs “bag”). In section 4.1 we perform
this task across-speaker (A: “bag” by speaker 1, B: “beg” by
speaker 1, X: “bag” by speaker 2). Since this task is particu-
larly hard, a representation that yields a good ABX score on
such a task can be considered a good representation for phone
recognition. In section 4.2 we also perform this task within-
speaker (A: “bag” by speaker 1, B: “beg” by speaker 1, X:
“bag” by speaker 1). A global score is obtained by averaging
ABX errors over all relevant triplets that can be found in the
corpus. We obtain an error between 0% and 50% (the chance
level), a low error characterizing a representation in which
categories are well separated from each other.

4. EXPERIMENTS

In the following experiments, we use a two-layers scattering
spectrum over 16ms windows, with normalized second order
coefficients and log-frequency scattering [6]. The features are
computed with the ScatNet toolbox [6].

4.1. Weakly-supervised phone representation learning on
TIMIT

The TIMIT dataset [14] is a corpus of clean read speech con-
taining a set of 10 sentences read by 630 speakers of eight ma-
jor dialects of American English. All the words of more than
5 characters that are repeated in the corpus are extracted and
matched as pairs of same. This yields 62,625 pairs of same
words represented as time bounding-boxes in the signal. We
extract the scattering features within these boxes and align
them with DTW, yielding 6.77M feature frames. We then
sample the same number of different pairs, which are sam-
pled randomly. Even if there is a risk of “false negatives” i.e.
labeling frames as different while they actually have the same
phonetic content, this probability is relatively low due to the
distribution of the 39 phonemes inside the English language.
The pairs of different objects are not aligned with DTW but
just aligned on the shortest one, since DTW looks for match-
ing acoustic units and would thus increase the risk of getting
false negatives.

Fig. 3 shows ABX errors on the across-speaker task. The
distances used for the ABX tasks are the cosine distance for
the raw features, and the symmetric KL-divergence for all
trained models. “Shallow” models have one hidden layer
while “Deep” models have three. Even though raw scattering
features do not yield a better ABX error than mel-filterbanks,
their use as an input representation leads to a substantial im-
provement after training an ABnet, with a best error of 9.8%
against 11.8% for the best ABnet trained on mel-filterbanks.
Our best Scattering-ABnet model even gives a better ABX
score than the HMM-GMM posteriorgrams (11%), very close
from the output of the deep supervised network (9.6%). In
fact, changing the input representation of the Shallow ABnet
from mel-filterbanks to scattering coefficients has an impact
on the ABX error (from 12.4% to 10.2%) that is 3.7 times
higher than adding hidden layers to get a Deep ABnet (from
12.4% to 11.8%).

4.2. Unsupervised phone representation learning on Buck-
eye and NCHLT

In this experiment we run our model under the conditions
of the Zero Resource Speech Challenge 2015 [15]. One of
the tasks in this challenge was unsupervised acoustic model-
ing. The challenge provided two data sets (a subset of the
Buckeye Corpus of conversational English [16] and a sub-
set of the NCHLT corpus of Xitsonga [17]) and baseline and
topline ABX scores for both data sets, both for within- and
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Fig. 3. From left to right: Across-speaker ABX error on
TIMIT (as percentages), measured on raw features (yellow
bars), best ABnet models trained on mel-filterbanks (purple
bars), best ABnet models trained on scattering spectrum (blue
bars), and outputs of three supervised systems (red bars).

across-speakers. The baselines provided by the challenge are
MFCC’s, the toplines GMM-HMM posteriorgrams. In the
spirit of the challenge, we extract the pairs of speech seg-
ments used for training our model in an unsupervised manner.
That is, rather than taking matching words from the gold tran-
scription, we extract them from the signal by an unsupervised
spoken term discovery (STD) algorithm [18]. This algorithm
discovered 3149 pairs of similar segments of speech from the
English corpus and 1782 pairs from the Xitsonga corpus, 50%
being used for training and 50% for early stopping. These
pairs form the same input to the ABnet. The different input
is composed of randomly matched segments of speech. Here,
the “Deep” ScatABnet architecture consists of 2 layers of 500
nodes, with a sigmoid activation function, exactly as in a pre-
viously published study using an ABnet with filterbanks [19].
The “Shallow” one has only one hidden layer.

We compare our model against the challenge baselines
(MFCC) and toplines (supervised HMM-GMM posterior-
grams) and also against the best performing system submitted
to the challenge [20], a DPGMM system that takes as input
talker-normalized MFCC’s. In Table 1, we can see that the
both ABnet variants perform better than the baseline. For
English within-speaker, both systems actually outperform
the supervised topline. ScatABnet has lower error scores
than the FbanksABnet on all conditions except Xitsonga
within-speaker. The table further shows that ScatABnet is
competitive with the state of the art system of [20], in one
case, across-speaker for Xitsonga, producing the lowest ABX
error. These performances are remarkable given that the num-
ber of pairs on which the ABnet is trained is much lower than
for the TIMIT. This low number of pairs can also explain
why here a shallow architecture with fewer parameters to
learn gives a higher performance than a deep one.

Model English Xitsonga
within across within across

Baseline (MFCC) 15.6 28.1 19.1 33.8
Topline (Supervised) 12.1 16.0 3.5 4.5

FbanksABnet [19] 12.0 17.9 11.7 16.6
Deep ScatABnet 11.3 17.1 12.5 16.2
Shallow ScatABnet 11.0 17.0 12.0 15.8
DPGMM [20] 10.8 16.3 9.6 17.2

Table 1. ABX error (as percentages) on the ZeroSpeech 2015
datasets (English, Xitsonga) for the ABX within- and across-
speaker tasks. The best scores for each condition are in bold.

5. CONCLUSION AND FUTURE WORK

This study confirms that the input representation of deep ar-
chitectures has a substantial impact on the performance of the
pipeline for acoustic modeling. The experiments on TIMIT
in section 4.1 show that switching from standard spectral
features to the scattering spectrum yields a substantial gain
(about 17% in relative error rate), a higher gain than switching
from a shallow to a deep network. This shows that in acoustic
representation learning, putting more emphasis on the input
representation might give a larger performance increase than
improving the learning architecture. These results suggest
that deep architectures that are trained on standard spectral
features are not exploited to their full potential, as previously
shown in a supervised setting in [21].

For future work we will use the output of our system as in-
put to the spoken term discovery system, thus bringing it full
circle. Since our system has improved the representation at
the phone level, we expect the spoken term discovery system
to find more and better matching pairs than with its original
input features.

Another way of improving the system would be to go be-
yond spectral features: since using a representation with more
information releases the potential of the learning algorithm,
we might try to train the ABnet directly on the raw signal.
As said before, this is currently done in supervised systems,
but it still remains very hard to do in an unsupervised setting.
Limiting the search space by imposing strong structural con-
straints on the architecture (e.g. convolutional lower layers)
could make this objective possible.
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