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ABSTRACT

Many state-of-the-art Large Vocabulary Continuous Speech
Recognition (LVCSR) Systems are hybrids of neural net-
works and Hidden Markov Models (HMMs). Recently, more
direct end-to-end methods have been investigated, in which
neural architectures were trained to model sequences of char-
acters [1, 2]. To our knowledge, all these approaches relied on
Connectionist Temporal Classification [3] modules. We in-
vestigate an alternative method for sequence modelling based
on an attention mechanism that allows a Recurrent Neural
Network (RNN) to learn alignments between sequences of
input frames and output labels. We show how this setup can
be applied to LVCSR by integrating the decoding RNN with
an n-gram language model and by speeding up its operation
by constraining selections made by the attention mechanism
and by reducing the source sequence lengths by pooling in-
formation over time. Recognition accuracies similar to other
HMM-free RNN-based approaches are reported for the Wall
Street Journal corpus.

Index Terms— neural networks, LVCSR, attention,
speech recognition, ASR

1. INTRODUCTION

Deep neural networks have become a popular replacement
for Gaussian Mixture Models for acoustic modeling in state-
of-the-art large vocabulary speech recognition systems [4].
However, these networks are typically still trained to match
acoustic frames to the states of classical systems in hybrid
setups that rely on multi-stage training procedures. The com-
plexity of the resulting systems may explain why research
about end-to-end trainable neural HMM-free systems for
LVCSR is becoming popular. Recurrent Neural Network
models trained with Connectionist Temporal Classification
(CTC) [3] achieved promising results on the Wall Street Jour-
nal [5, 1] and on the Switchboard [2] corpora. Both of these
models were trained to predict sequences of characters and
were later combined with a word level language model.

While the results of CTC based systems are promising,
alternative methods for neural sequence modelling have been

recently proposed. For instance, a new direction of neural net-
work research has emerged that deals with models that learn
to focus their “attention” to specific parts of their input. Sys-
tems of this type have been successfully applied to a variety
of tasks including machine translation [6], caption generation
[7], handwriting synthesis [8], visual object classification [9]
and phoneme recognition [10, 11].

In this work, we investigate the application of an Attention-
based Recurrent Sequence Generator (ARSG) as a part of an
end-to-end LVCSR system. We start from the system pro-
posed in [11] for phoneme recognition and make the follow-
ing contributions:

1. We reduce total training complexity from quadratic to
linear, by applying the concept of windowing [11] dur-
ing both network training and application.

2. In the spirit of he Clockwork RNN [12] and the hierar-
chical gating RNN [13], we introduce a recurrent archi-
tecture that successively reduces the source sequence
length by pooling frames neighboring in time. 1

3. We show how a character-level ARSG and n−gram
word-level language model can be combined into a
complete system using the Weighted Finite State Trans-
ducers (WFST) framework.

2. ATTENTION-BASED RECURRENT SEQUENCE
GENERATORS FOR SPEECH

The proposed system is an encoder-decoder [15, 16] network
that can map sequences of speech frames to sequences of
characters2. It consists of a deep bi-directional RNN that en-
codes the speech signal into a suitable feature representation
and of an Attention-based Recurrent Sequence Generator that
decodes this representation into a sequence of characters.

2.1. Encoder-Decoder Architecture

We use a deep Bidirectional RNN (BiRNN) as the encoder
[17]. Thus, the representation is a sequence of BiRNN state

1This mechanism has been recently independently proposed in [14].
2The word “decoder” refers to a network in this context, not to the final

recognition algorithm.
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Fig. 1. A pooling over time BiRNN: the upper layer runs
twice as slow as the lower one. It can average, or subsample
(as shown in the figure) hidden states of the layer below it.

vectors (h1, . . . ,hN ). For a standard deep BiRNN, the se-
quence (h1, . . . ,hN ) is as long as the input of the bottom-
most layer, which in the context of speech recognition means
one hi for every 10ms of the recordings. We found that for
our decoder (see 2.2) such a representation is overly precise
and contains much redundant information. This led us to add
pooling between BiRNN layers as illustrated by Figure 1.

2.2. Attention-equipped RNNs

The decoder network in our system is an Attention-based
Recurrent Sequence Generator (ARSG) [6, 11]. An ARSG
produces an output sequence (y1, · · · , yT ) one element at a
time, simultaneously aligning each generated element to the
encoded input sequence (h1, · · · ,hN ). It is composed of
an RNN and an additional subnetwork called the “attention
mechanism”. The attention mechanism selects the tempo-
ral locations over the input sequence that should be used to
update the hidden state of the RNN and to predict the next
output value. The selected input sequence elements are com-
bined in a weighted sum ct =

∑
n αtnhn, where αtn are

called the attention weights and we require that αtn ≥ 0 and
that

∑
n αtn = 1. We picture and ARSG in Figure 2.

The equations describing the attention mechanism are [11]:

F = Q ∗αt−1 (1)

etn = w> tanh(Wst−1 +Vhn +Ufn + b) (2)

αtn = exp(etn)

/
N∑

n=1

exp(etn) . (3)

where W, V, U, Q are parameter matrices, w and b are
parameter vectors, ∗ denotes convolution, st−1 stands for the
previous state of the RNN component of the ARSG.

Simply put, the attention mechanism combines informa-
tion from three sources to decide where to focus at the step
t: the decoding history contained in st−1, the content in the
candidate location hn and the focus from the previous step
described by the attention weights αt−1. It is shown in [11]

Fig. 2. Schematic representation of the Attention-based Re-
current Sequence Generator. At each time step t, an MLP
combines the hidden state st−1 with all input vectors hl to
compute the attention weights αtl. Then, the new hidden state
st and prediction for output label yt can be computed.

that using αt−1 in the equations defining αt is crucial for re-
liable behaviour on long input sequences.

A disadvantage of the approach from [11] is the complex-
ity of the training procedure, which is O(TN) since weights
αtn have to be computed for all pairs of input and output
positions. The same paper showcases a windowing approach
that reduces the complexity of decoding to O(T + N). In
this work, we apply the windowing at the training stage as
well. Namely, to predict the character yt we constrain the
attention mechanism to consider positions from the range
(mt−1 − wleft, . . . ,mt−1 + wright), where mt−1 is the me-
dian of αt−1, interpreted in this context as a distribution.
The values wleft and wright define how much the window
extends to the left and to the right respectively. This modifi-
cation makes training significantly faster.

Apart from the speedup it brings, windowing can be also
very helpful for starting the training procedure. From our ex-
perience, it becomes increasingly harder to train an ARSG
completely from scratch on longer input sequences. We found
beneficial to provide a rough estimate of the desired alignment
during the early training stage. Specifically, we forced the
network to choose from positions in the range Rt = (smin +
tvmin, . . . , smax + tvmax). The numbers smin, smax, vmin,
vmax were roughly estimated from the training set so that the
number of leading silent frames for training utterances was
between smin and smax and so that the speaker speed, i.e.,
the ratio between the transcript and the encoded input lengths,
was between vmin and vmax. We aimed to make the win-
dows Rt as narrow as possible, while keeping the invariant
that the character yt was pronounced within the window Rt.
The resulting sequence of windows is quickly expanding as
the character number t grows, but still it helped to quickly
move the network out of the random initial mode, in which it
had often aligned all characters to a single location in the au-
dio data. The median-centered windowing could not be used
for this purpose, since it relies on the quality of the previous
alignment to define the window for the new one.
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3. INTEGRATION WITH A LANGUAGE MODEL

Although an ARSG implicitly learns how an output sym-
bol depends on the previous ones, the transcriptions of the
training utterances are typically insufficient to learn a high-
quality language model. For this reason, we investigate how
a character-level ARSG can be integrated with a word-level
language model.

We use the Weighted Finite State Transducer (WFST)
framework [18, 19] to build a character-level language model
from a word-level one. We compose the language model
Finite State Transducer (FST) G with a lexicon FST L that
spells out the letters of each word. For moderately sized
language models we build an FST T = min(det(L ◦ G)) to
define the log-probability for character sequences. We push
the weights of this FST towards the starting state to help
hypothesis pruning during decoding. For larger (e.g. tri-
gram) language models the determinization is impractically
slow. To handle non-deterministic FSTs, we assume that its
weights are in the logarithmic semiring and compute the total
log-probability of all FST paths corresponding to a character
prefix from the beam.

The decoding algorithm uses a left-to-right beam search
[16] to find the transcript y that minimizes the cost L which
combines the encoder-decoder (ED) and the language model
(LM) outputs as follows:

L = − log pED(y|x)− β log pLM (y)− γT (4)

where β and γ are tunable parameters, T is the length of the
output sequence (y1, . . . , yT ). The last term γT is important,
because without it the LM component dominates and the cost
L is minimized by too short sequences. We note that the same
criterion for decoding was proposed in [1] for a CTC network.

4. RELATION TO PRIOR WORK

A popular method to train sequence prediction networks is
Connectionist Temporal Classification [3]. It has been suc-
cessfully used for phoneme recognition [17] and character-
based LVCSR [5, 1, 2, 20]. CTC allows recurrent neural net-
works to predict sequences that are shorter than the input se-
quence by summing over all possible alignments between the
output sequence and the input of the CTC module. In the
CTC approach, output labels are conditionally independent
given the alignment and the input sequence. In the context
of speech recognition, this means that a CTC network lacks
a language model, which greatly boosts the system perfor-
mance when added to a trained CTC network [1, 20].

An extension of CTC is the RNN Transducer which com-
bines two RNNs into a sequence transduction system [21, 22].
Unlike CTC, RNN transduction systems can also generate
output sequences that are longer than the input. RNN Trans-
ducers have led to state-of-the-art results in phoneme recogni-

tion on the TIMIT dataset [17], which were recently matched
by an ASRG network [11].

The RNN Transducer and ARSG approaches are roughly
equivalent in their capabilities. Both learn an implicit lan-
guage model jointly with the rest of the network. However,
their main difference is that in ARSG the alignment is explic-
itly computed by the network, as opposed to dealing with a
distribution of alignments in the RNN Transducer.

Finally, two recently published works partially overlap
with the content of this paper. [14] proposes a similar to
ours, character-based Encoder-Decoder network that employs
pooling between BiRNN layers. [20] advocates using FSTs
to build a character-level model from an n-gram model. We
note, that the research described in this paper was carried in-
dependently and without communication with the authors of
both aforementioned works.

5. EXPERIMENTS

5.1. Data

We trained and evaluated our models3 on the Wall Street Jour-
nal (WSJ) corpus (available as LDC93S6B and LDC94S13B).
Training was done on the 81 hour long SI-284 set of about
37K sentences. As input features, we used 40 mel-scale fil-
terbank coefficients together with the energy and their deltas
and delta-deltas, yielding a total of 123 feature values per
frame. Evaluation was done on the “eval92” evaluation set.
Hyperparameter selection was performed on the “dev93” set.
For language model integration, we used the 20K closed vo-
cabulary setup and the bigram and trigram language models
that were provided with the data set. In addition we tried
an extended language model as produced by Kaldi s5 recipe.
We use the same text preprocessing as in [1], leaving only
32 distinct labels: 26 letters, apostrophe, period, dash, space,
noise and end-of-sequence tokens.

5.2. Training

Our model used 4 layers of 250 forward + 250 backward GRU
[15] units in the encoder, with the top two layers reading every
second of hidden states of the network below it (see Figure 1),
yielding a fourfold source sequence length reduction. A cen-
tered convolution filter of width 201 was used in the attention
mechanism to extract a single feature from the previous step
alignment as described in (3).

We used a rough estimate of the proper alignment for the
first training epoch as described in Section 2.2. After that,
the training was restarted with the windowing described in
the same section. The window parameters were wleft =
wright = 100, which corresponds to considering a large 8
second long span of audio data at each step, taking into ac-
count the pooling done between layers.

3Our code is available at https://github.com/rizar/attention-lvcsr
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Table 1. Character Error Rate (CER) and Word Error Rate
(WER) on WSJ. Note that phone-based and character-based
systems are not directly comparable.

Model CER WER
Encoder-Decoder 6.4 18.6
Encoder-Decoder + bigram LM 5.3 11.7
Encoder-Decoder + trigram LM 4.8 10.8
Encoder-Decoder + extended trigram LM 3.9 9.3
Graves and Jaitly (2014) [5],

CTC 9.2 30.1
CTC, expected transcription loss 8.4 27.3

Hannun et al. (2014) [1],
CTC 10.0 35.8
CTC + bigram LM 5.7 14.1

Miao et al. (2015) [20],
CTC for phonemes + lexicon - 26.9
CTC for phonemes + trigram LM - 7.9
CTC + trigram LM - 9.0
CTC + extended trigram LM - 7.3

All weights were initialized from the normal distribution
with variance 0.1. We used the AdaDelta [23] training algo-
rithm with hyperparameters ρ = 0.95 and ε annealed in steps
from 10−8 to 10−10. The column norm constraint 1 was im-
posed on all weight matrices [24].

5.3. Decoding and Evaluation

For best performance we used a beam size of 100. However,
this brought only ≈ 10% relative improvement over a beam
size of 10. We used α = 0.5 and γ = 1 with a language
model and γ = 0.1 without one. It was necessary to use
an asymmetric window for the attention when decoding with
large γ. More specifically, we reduced wleft to 10. Without
this trick, the cost L could be infinitely minimized by looping
across the input utterance, for the penalty for jumping back in
time included in log p(y|x) was not high enough.

5.4. Results

Results of our experiments are gathered in Table 1. Our model
shows performance superior to that of CTC systems when
no external language model is used. The improvement from
adding an external language model is however much larger
for CTC-based systems. The final performance of our model
is better than the one reported in [1] (12.7% vs 14.1%), but
worse than the the one from [20] (11.5% vs 9.0%) when the
same language models are used.

6. CONCLUSIONS

In this work we showed how an Encoder-Decoder network
with an attention mechanism can be used to build an LVCSR

system. The resulting approach is significantly simpler than
the dominating HMM-DNN one, with fewer training stages,
much less auxiliary data and less domain expertise involved.
Combined with a trigram language model our system shows
decent, although not yet state-of-the-art performance.

We present two methods to improve the computational
complexity of the investigated model. First, we propose pool-
ing over time between BiRNN layers to reduce the length of
the encoded input sequence. Second, we propose to use win-
dowing during training to ensure that the decoder network
performs a constant number of operations for each output
character. Together, these two methods facilitate the appli-
cation of attention-based models to LVCSR.

Unlike CTC networks, our model has an intrinsic language-
modeling capability. We believe it to be the reason for greater
performance of the ARSG model when no external language
model is given. However, the small size of the training corpus
makes it easy to overfit on it. This may explain why the ben-
efits of adding an external language model are smaller than
for CTC networks. On the other hand, it is possible to use the
states of a pre-trained language model as additional inputs to
an ARSG, possibly reducing the incentive to memorize the
training prompts. Joint training of the ARSG and an external
language model is also possible [25]. Investigations in this
direction are likely to be a part of our future work.
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