
STABILITY ANALYSIS OF THE LEAST-MEAN-MAGNITUDE-PHASE ALGORITHM

Scott C. Douglas1,2

1Southern Methodist University
2LGT Corporation

Dallas, Texas 75275 USA
douglas@lyle.smu.edu

Danilo P. Mandic

Imperial College London
Dept. of Electrical and Electronic Engineering

London, SW7 2BT United Kingdom
d.mandic@imperial.ac.uk

ABSTRACT

The least-mean-magnitude-phase (LMMP) algorithm is use-
ful for complex-valued signal processing applications where
control of magnitude and/or phase error information is needed
to achieve good overall performance. Due to the highly-
nonlinear nature of the update terms in the LMMP and re-
lated methods, few convergence and stability results exist to
guide step size choices for such algorithms. In this paper, we
provide a rigorous stability and convergence analysis of the
LMMP algorithm using robustness procedures and give suf-
ficient stability conditions on the magnitude and phase step
sizes to guarantee contraction-mapping behavior. We also
provide an approximate relation for the steady-state MSE
as a function of the step size values. Simulations verify the
predictive powers of our analytical results and yield useful
insights on step size choices in practice.

Index Terms— Adaptive algorithms, adaptive filters,
adaptive signal processing, adaptive systems, algorithm de-
sign and analysis.

1. INTRODUCTION
The complex least-mean-square (CLMS) algorithm is a sim-
ple procedure for adjusting the coefficients of an adaptive sys-
tem to model linear, possibly time-varying relationships be-
tween complex-valued signals. Originally derived in [1], it
has found use in numerous applications, particularly in com-
munications system tasks where a baseband signal represen-
tation admits a complex-valued system model.

In some situations, however, the CLMS algorithm may
not perform adequately, particularly if the signals being used
have time-varying behavior that depends on their complex
amplitudes or complex phases, such as those caused by
Doppler effects [2] or by the inherent phase characteris-
tics of the signals being processed [3]. To this end, various
algorithms have been proposed to address the adaptation of
a complex linear system model based on amplitude and/or
phase information to improve overall performance, including
(1) the constant modulus channel estimator (CMCE) algo-
rithm [2], (2) the least-mean-phase (LMP) algorithm [3], and
(3) the least-mean-magnitude-phase (LMMP) algorithm [4].

Of these three algorithms, the LMMP algorithm includes the
CMCE algorithm as a special case, and it has tunable parame-
ters that allow it to track fast variations in either the amplitude
statistics or the phase statistics of the signals being processed.
The LMMP algorithm was also shown to outperform the
LMP algorithm in cases where signal amplitude variations
are significant [4]. The main drawback of these extensions
to the CLMS algorithm has been a lack of solid convergence
results that guide users as to the choice of step sizes to obtain
consistent stable behavior. While the CMCE algorithm has
been proven to cause a measure of the magnitude error of
the output to converge [2], no relationship to the phase error
has been considered. To our knowledge, no rigorous conver-
gence proofs or stability analyses of the LMP or the LMMP
algorithms currently exist in the scientific literature.

In this paper, we provide a rigorous stability analysis
of the normalized least-mean-magnitude-phase (normalized
LMMP) algorithm for complex-valued signals. Our analysis
of the normalized LMMP algorithm uses robustness methods
[5]–[9] originally developed for the analysis of the LMS algo-
rithm and extended to the complex signal case, and provides
useful sufficient conditions on the magnitude step size µm

and phase step size µp to guarantee convergence. We show
that the signal independent choices

0 < µm < 2 (1)
µm

2
< µp < 1 +

µm

2
(2)

are sufficient to cause the normalized LMMP algorithm to im-
pose a contraction on the parameter error for system modeling
for ideal (i.e. noise-free) desired signals. In the more-realistic
case of noisy signal observations, we obtain the following ap-
proximate bound between the error sequence ek and the ob-
servation noise sequence ηk for step size choices satisfying
(1)–(2), where xk is the input signal vector sequence:

lim
n→∞

1

n

n−1∑
k=0

|ek|2

||xk||2
≤ f(µp, µm)

[
lim
n→∞

1

n

n−1∑
k=0

|ηk|2

||xk||2

]
(3)

f(µp, µm) =
2 (µp + |µm − µp|)

µp(2− µp)− 2|µm − µp|(1− µp)
. (4)

Thus, the complex error produced by the LMMP algorithm
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is well-behaved for the step size ranges in (1)–(2), thereby
establishing convergence and stability results for this algo-
rithm. Simulations show that these results are reasonable pre-
dictors of stability and steady-state behaviors of the LMMP
algorithm and provide useful guidance on step size choices.

2. NORMALIZED
LEAST-MEAN-MAGNITUDE-PHASE ALGORITHM

The normalized LMMP algorithm adjusts the coefficient vec-
tor wk = [w1,k · · ·wL,k]

T of a linear adaptive system with
L complex coefficients to model a desired response signal dk
via the relation yk = wT

k xk, where xk = [x1,k · · ·xL,k]
T

is the complex-valued input signal vector at time k. It at-
tempts to minimize the instantaneous least-mean-square cost
JLMS(dk, yk) = |dk − yk|2 via the decomposition

JLMS(dk, yk) = Jm(dk, yk) + Jp(dk, yk) (5)
Jm(d, y) = (|d| − |y|)2 (6)
Jp(d, y) = 2|d||y|(1− cos( 6 d− 6 y)), (7)

where (6) and (7) denote the magnitude and phase costs, re-
spectively, and y = |y|ej 6 y .

The normalized LMMP algorithm is derived from

wk+1 = wk −
µm

2||xk||2
∇w∗Jm(dk, yk)

− µp

2||xk||2
∇w∗Jp(dk, yk), (8)

where ∇w∗J·(d, y) is the complex gradient of J·(d, y) with
respect to w∗ [10] for each respective cost and ||x||2 = x∗Tx.
The update relation obtained from this expression is

wk+1 = wk +
µm

||xk||2
[|dk|sgn(yk)− yk]x∗k

+
µp

||xk||2
[dk − |dk|sgn(yk)]x∗k. (9)

In this algorithm, the magnitude step size µm and phase step
size µp are chosen to control the degrees to which the magni-
tude cost Jm(d, y) and the phase cost Jp(d, y) influence the
dynamics of the adaptive system. Note that for µm = µp = µ,
the normalized CLMS algorithm is obtained, and for µp = 0,
the a posteriori form of the CMCE algorithm is obtained.

3. STABILITY ANALYSIS
The proof of convergence of the normalized LMMP algorithm
uses the robustness analysis first used in the analysis of the
LMS algorithm and its variants [5, 6] as extended to the com-
plex case. Through this analysis, we prove the sufficient con-
ditions given in (1)–(2) and develop the error bound in (3).
This analysis assumes that the desired response is modeled as

dk = wT
optxk + ηk (10)

where wopt is the optimum coefficient vector and ηk is an ob-
servation noise sequence that is statistically-independent of
xk. For this analysis, we write the normalized LMMP algo-
rithm in the following convenient form:

wk+1 = wk +
2µp − µm

||xk||2
ckekx

∗
k (11)

ck =
µp

2µp−µm
−
(
µm−µp

2µp−µm

)(
|dk|−|yk|

ek

)
yk
|yk|

.(12)

The reason for this choice can be found from the following
bound, which is a result of the reverse triangle inequality:

||dk| − |yk|| ≤ |ek|, (13)

with equality if and only if dk = yk, i.e. ek = 0. Geometri-
cally, this fact can also be verified because the magnitude of
ek = dk−yk always increases with increasing phase error for
a given |dk| and |yk|.

To proceed, define

µ̃ = 2µp − µm. (14)

We consider the parameter error vector vk = wk −wopt and
write the normalized LMMP update as

vk+1 = vk +
µ̃

||xk||2
ckekx

∗
k (15)

ek = ηk − vT
k xk. (16)

Pre-multiplying both sides of the above relation by their Her-
mitian transposes, we obtain

||vk+1||2 = ||vk||2 −
µ̃

||xk||2
(ck + c∗k) (|ek|2 − |ηk|2)

+
µ̃2

||xk||2
|ck|2 |ek|2

− µ̃

||xk||2
2Re{ckη∗kvT

k xk}, (17)

where we have used ekη∗k = |ηk|2 − vT
k xkη

∗
k to simplify the

relation. At this point, we consider two cases:

Case 1: No observation noise ηk = 0. In this case, we have

ek = −vT
k xk, (18)

such that

||vk+1||2 − ||vk||2

=
[
−µ̃ (ck + c∗k) + µ̃2 |ck|2

] |ek|2
||xk||2

. (19)

For a non-zero error signal, this relation is clearly a contrac-
tion mapping for vk so long as

µ̃ (ck + c∗k)− µ̃2 |ck|2 > 0, (20)
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which becomes |1− µ̃c| < 1 or∣∣∣∣1− µp − (µm − µp)

(
|dk| − |yk|

ek

)
yk
|yk|

∣∣∣∣ < 1. (21)

Now, for any real or complex a or b, we have

|a− b| ≤ |a|+ |b|, (22)

which when combined with (13) and (21) yields the following
three conditions independent of the values of dk and yk:

|1− µp| < 1 (23)
|1− µp − (µm − µp)| < 1 (24)
|1− µp + (µm − µp)| < 1. (25)

Simplifying these relations, we obtain the corresponding con-
ditions in (1) and (2).

Case 2: Observation noise ηk 6= 0. In this case, we apply the
iteration in (17) n times and divide both sides by n to obtain

1

n
||vn||2 =

1

n
||v0||2

− 1

n

n−1∑
k=0

|ek|2

||xk||2
[
µp (ck + c∗k)− µ2

p |ck|
2
]

+
1

n

n−1∑
k=0

|ηk|2

||xk||2
µp (ck + c∗k)

− 1

n

n−1∑
k=0

µp

||xk||2
2Re{ckη∗kvT

k xk}. (26)

The left-hand side of (26) is always non-negative, and as n→
∞, the first term on the right-hand side of (26) tends to zero.
Moreover, although ck functionally depends on both xk and
ηk, in practice the last term of (26) is much smaller than the
other terms in this relation, particularly if the input and obser-
vation noise signals are symmetric and well-behaved. Thus,
we neglect the last term in (26), which yields the inequality

lim
n→∞

1

n

n−1∑
k=0

|ek|2

||xk||2
[
µp (ck + c∗k)− µ2

p |ck|
2
]

≤ lim
n→∞

1

n

n−1∑
k=0

|ηk|2

||xk||2
µp (ck + c∗k) (27)

Taking into account the bounds in (1)–(2) and (13) over all
possible ranges and choosing the most conservative values in
each case, we obtain the result in (3)–(4).

4. NUMERICAL EVALUATIONS
We now provide numerical evidence of the utility of the tech-
nical results derived previously. We first consider the suffi-
cient stability conditions in (1)–(2) and show that LMMP ex-
hibits contraction-mapping behavior for a range of step sizes

Fig. 1. Percentage of contraction-mapping behaviors ob-
served as a function of step size values µp and µm.

that includes this stability region. We then explore the value
of f(µp, µm) describing the relative steady-state MSE level
observed for the LMMP algorithm for different step size com-
binations.

To test the LMMP’s stability in an ideal scenario, we ap-
ply the algorithm to a nine-coefficient FIR system identifi-
cation task with zero-mean unit-power uncorrelated complex
Gaussian input signals. We perturb w0 from wopt by vec-
tors generated from a complex jointly-Gaussian distribution
and normalized such that ||v0||2 = 1. We then apply the
LMMP algorithm for a range of step sizes spanning 0.1 ≤
{µp, µm} ≤ 1.9 and observe the number of times that the
convergence of ||vk||2 is monotonically-decreasing during its
entire initial convergence period, determined by either the
smaller of k = 1000 iterations or the value of k such that
||vk||2 = 10−7, as calculated across 10000 different Monte
Carlo runs for each {µp, µm} pair. By representing this frac-
tion of trials as a percentage, we can observe in practice for
what step size choices the LMMP algorithm is providing con-
vergent behavior and compare these observations to our suffi-
cient stability conditions for µp and µm.

Fig. 1 shows this observed percentage as a mesh plot
across µp and µm. From this figure, we see that the LMMP
algorithm provides consistent and stable behavior for a wide
range of step sizes, as contraction-mapping behavior is ob-
served for nearly the entire ranges of both µp and µm over the
intervals (0, 2). The only step size combinations that yield
problematic behavior are when one step size value is chosen
close to 2 and the other step size value is near zero, and these
combinations are easily avoided.

Fig. 2 shows the observed percentage of contraction-
mapping behavior as a quantized grayscale image, where
white regions correspond to 100% observations and other
regions represent strictly less than 100% of the observa-
tions. Also shown is the stability region for {µp, µm}
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Fig. 2. Percentage of contraction-mapping behaviors ob-
served as compared to the sufficient stability conditions.

from our analysis in blue, adjusted for gridding in this
case. As can be seen, our sufficient stability conditions
always produce contraction-mapping behavior in our simula-
tions, verifying our results, and the predicted stability region
covers the observed contraction-mapping region. The im-
portant result from this analysis is the recognition that the
LMMP algorithm’s stability appears to be well-behaved over
0 < {µp, µm} ≤ 1, which represent the practical values often
chosen for the algorithm [4].

Fig. 3 shows the value of f(µp, µm) in dB as a function
of {µp, µm} over the stability region in (1)–(2) as a mesh plot
(left side) and a contour plot (right side). This figure repre-
sents the bound on the relative steady-state MSE produced by
LMMP as a function of step size choices. As can be seen,
f(µp, µm) has a “boat hull” shape that is generally small but
increases significantly in situations where µp is small and µm

is either near zero or near 2µp, as well as near µp = µm = 2.
This increase in steady-state MSE is also observed for these
step size combinations in Monte Carlos simulations. Thus, if
a low MSE is important to achieve, one should choose a value
of µm that is not too small or too large relative to the value
of µp, and one should avoid the upper limits of the stability
range for each step size.

To evaluate the behavior of the bound in (3)–(4), we ran
simulations of a simple complex-valued nine-coefficient sys-
tem identification task for different µp and µm choices and
computed time averages of |ek|2/||xk||2 and |ηk|2/||xk||2
from these simulations. To approximate the limiting behavior
of the expressions, we used only the last 2500 iterations of
these simulations to compute means and σ-error bars for dif-
ferent choices of µp and µm. Shown in Fig. 4 are the means
and σ-error bars using 200 experiments each for the normal-
ized MSEs |ek|2/||xk||2 and the bound in (3)–(4) computed

Fig. 3. Value of f(µp, µm) in dB for different step size
choices as a mesh plot (left side) and a contour plot (right
side).

Fig. 4. Numerical evaluation of the bound in (3)-(4) via sim-
ulations; see text for explanation.

from |ηk|2/||xk||2 as a function of µp for (a) µm = 0.3, (b)
µm = 0.5, and (c) µm = 1.0, respectively. The bound is
clearly tightest when µp = µm corresponding to the complex
LMS algorithm, although the upper bound is within a factor
of four of the normalized MSE in the cases shown. The bound
appears to be most loose for step sizes near µp = µm/2, as
the LMMP algorithm shows no anomalous behavior in such
cases.

5. CONCLUSIONS

This paper provides a simple but useful stability analysis
of the least-mean-magnitude-phase (LMMP) algorithm for
complex-valued adaptive signal processing applications. The
analysis yields practical results on the choice of step sizes for
this algorithm, providing step size ranges to guarantee stabil-
ity. It also yields approximate expressions for the steady-state
MSE of the algorithm as a function of the step sizes chosen.
Simulations indicate that the results are accurate and provide
additional insight on the behavior of this algorithm.
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