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ABSTRACT
Many important non-adaptive approximation methods are know to
diverge for almost all functions from certain Banach space X . One
can show that a corresponding adaptive method will improve this
behavior in the sense that it converges to the desired result for almost
all functions in X . However, even though an adaptive method tries
to find an optimal approximation for any given function, the search
horizon (i.e. the search set) has to be finite in practical applications.

This paper shows that an adaptive method with finite search hori-
zon either converges for all f ∈ X or it diverges for almost all
f ∈ X . As an example, we show that there exists no realizable
adaptive method which can calculate the Hilbert transform of a con-
tinuous function f based on samples of f .

Index Terms— Adaptive signal processing, Hilbert transform,
Sampled data

1. INTRODUCTION & MOTIVATION

Let X , Y be Banach spaces and let T : X → Y be a bounded lin-
ear operator. An important problem in many applications of signal
processing is to approximate T by a sequence {TN}N∈N of linear,
bounded operators TN : X → Y . The operators TN often have
a particular structure which is determined by the actual application,
or they are chosen to make the evaluation of TNf simple. For ex-
ample, in digital signal processing, one naturally requires that the
calculation of TNf is based on a finite number {f(λn,N )}Nn=1 of
samples of f . Then the operators TN will have the form TNf =∑N
n=1 f(λn,N ) pn,N where pn ∈ X are kernels which are often

simple in some sense. In many cases pn,N are chosen to be expo-
nential, trigonometric, or spline functions [1], since they allow for a
very fast and efficient calculation. Usually, it is not hard to design
sequences {TN}N∈N such that TNf converges to Tf for all f in
a dense subset X0 of X . The fundamental question is then whether
{TNf}N∈N converges to Tf for every f ∈ X .

There are many important problems where TNf actually fails
to converge for all f ∈ X . Examples include the Fourier series
on the space C(−π, π) of continuous functions, the Shannon sam-
pling series on the Paley-Wiener space PW1 of integrable bandlim-
ited functions, or Hilbert transform approximations on C(−π, π) [2].
Such negative outcomes are often stated as

lim sup
N→∞

∥∥TNf∗ − Tf∗‖Y =∞ for some f∗ ∈ X . (1)

Results of this form are typically proven by showing that the norms
‖TN‖X→Y are not uniformly bounded. Then (1) follows from the
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theorem of Banach–Steinhaus [3]. Moreover, the Banach–Steinhaus
technique implies additionally that the set of all f∗ ∈ X which sat-
isfy (1) is a residual set [4, 5], i.e. a large set in X (see Sec. 2 for a
precise description).

Non-adaptive and adaptive approximations The sequence
{TN}N∈N can be regarded as an approximation method for Tf .
It is non-adaptive, since the sequence {TN}N∈N does not depend
on the actual f ∈ X . A result as in (1) tells us that the non-adaptive
method is actually not applicable since it diverges for most f ∈ X .

However, (1) shows only that the sequence {TN}N∈N has ”bad
subsequences”, indexed by {Nk}k∈N, such that TNkf∗ does not
converge to Tf∗. However, (1) does not exclude the existence of
”good subsequences” such that {TNkf∗}k∈N converges to Tf∗.
More precisely, (1) does not exclude

lim inf
N→∞

∥∥TNf −Tf
∥∥
Y <∞ or even lim inf

N→∞

∥∥TNf −Tf
∥∥
Y = 0

for all f ∈ X . If a convergent subsequence {Nk}k∈N ⊂ N exists,
it generally depends on the actual f ∈ X [6]. So the selection of a
good subsequence {Nk = Nk(f)}k∈N such that

lim
k→∞

∥∥TNk(f)f − Tf
∥∥
Y = 0 (2)

can be regarded as an adaption of the approximation method
{TN}N∈N to the actual function f ∈ X . Conversely, it is clear
that no convergent subsequence exists, if in addition to (1)

lim inf
N→∞

∥∥TNf∗ − Tf∗
∥∥
Y =∞ for some f∗ ∈ X , (3)

a property which was coined strong divergence of {TN}N∈N [7].
The next example illustrates that there are sequences {TN}N∈N
which diverge as in (1) but which are not strongly divergent.
Example 1 (Fourier Series): Let X = C(T) be the set of all con-
tinuous functions f on T = [−π, π] with f(−π) = f(π), equipped
with the maximum norm ‖ · ‖∞. Let Y = C and consider for an ar-
bitrary but fixed λ ∈ T the bounded linear functional Tλf = f(λ).
To define an approximation sequence {Tλ,N}N∈N of Tλ, we con-
sider for any f ∈ C(T) and all N ∈ N the partial Fourier series

(
FNf

)
(t) =

N∑
n=−N

f̂n eint with f̂n =
1

2π

∫
T
f(τ) e−inτ dτ

and define Tλ,N : C(T)→ C by TN,λf = (FNf)(λ).
It is known that ‖Tλ,N‖ = ‖FN‖C(T)→C(T) → ∞ as N → ∞ [8].
So by the theorem of Banach-Steinhaus, {Tλ,N}n∈N has a diver-
gence behavior as in (1). However, a result of Fejér [9] implies that
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Parameters: − a sequence {TN}N∈N ⊂ L(X ,Y)
− an error bound ε > 0

Input: f ∈ X
N = k = 0; N0 = 0; E0 = ‖Tf‖Y
repeat

k = k + 1
repeat

N = N + 1
EN = ‖TNf − Tf‖Y

until (EN < ENk−1);
Nk = N

until (ENk < ε);

Output: convergent subsequence {Nk(f)}
Algorithm 1: A formal adaptive approximation algorithm
with infinite search horizon.

to every f ∈ C(T) there is a subsequence {Nk = Nk(λ, f)}k∈N so
that

lim
k→∞

Tλ,Nkf = Tλf = f(λ) .

A similar same results holds for system approximations [10].

2. PROBLEM STATEMENT AND NOTATIONS

Given a sequence {TN}N∈N which satisfies (1). Let

WT =
{
f ∈ X : lim inf

N→∞

∥∥TNf − Tf
∥∥
Y = 0

}
be the set of all f ∈ X for which a subsequence {Nk}k∈Z exists
such that TNkf converges to Tf . This paper studies the following
two questions:

• Is it possible to find practical (i.e. realizable) adaptive algo-
rithms which determines for a given f ∈ WT the convergent
subsequence {Nk(f)}k∈N such that (2) is satisfied?

• Which size has the subset of functions inWT for which such
a practical algorithm fails?

We recall shortly (see, e.g., [5, 11]) that a setM in a topological
space X is called nowhere dense if its closure does not contain any
nonempty open set of X . A setM is said to be meager (or of first
category) ifM is the countable union of nowhere dense sets. A set
which is not meager, is called nonmeager (or of second category).
Meager sets are ”small”. They play a similar role for topological
spaces as sets of measure zero in measure spaces [11]. The com-
plement of any meager set is called a residual set. It follows from
Baire’s theorem that any residual set is nonmeager and dense. More-
over, any open and dense subset is a residual set.

The set of all linear bounded operators T : X → Y is denoted
by L(X ,Y), and L(X ) stands for L(X ,X ). Throughout this paper
we consider the following class of operator sequences.
Definition 1: A sequence {TN}N∈N ⊂ L(X ,Y) is said to be a
weakly divergent approximation sequence of T ∈ L(X ,Y) if

(i) there is a dense subset X0 of X such that

lim
N→∞

‖TNf − Tf‖Y = 0 for all f ∈ X0 .

(ii) it is weakly divergent, i.e. it satisfies (1).

Parameters: − a sequence {TN}N∈N ⊂ L(X ,Y)
− a strictly increasing sequence {Sk}k∈N ⊂ N
− constants ε,M ∈ R with 0 < ε < M <∞

Input: f ∈ X
k = 0; E0 = ‖Tf‖Y
repeat

k = k + 1

Nk = arg min
N∈(Sk,Sk+1]

∥∥TNf − Tf
∥∥
Y (4)

Ek =
∥∥TNkf − Tf

∥∥
Y (5)

until (Ek < ε) OR (Ek ≥ Ek−1);

if Ek < ε then
Output: Success: convergent subsequence {Nk(f)}

else
Output: Error: No convergent subsequence may exist.

end
Algorithm 2: A formal adaptive algorithm with finite search
horizons (Sk, Sk−1].

3. ADAPTIVE TECHNIQUES

Methods with infinite search horizon Given a weakly divergent
approximation sequence of T ∈ L(X ,Y). It was shown in [10]
that the corresponding setWT is a residual set in X . So for almost
every function f ∈ X it is possible to find a subsequence {Nk =
Nk(f)}k∈N such that limk→∞ ‖TNkf − Tf‖Y → 0. This result
shows the power of adaptive approximation methods, because (1)
tells us that the non-adaptive method {TN}N∈N fails to converge for
almost all functions in X whereas an adapted method {TNk(f)}k∈N
succeeds for almost all f ∈ X .

The determination of a convergent subsequence has generally to
be done by an exhaustive search as sketched in Algorithm 1. To this
end, we calculate the approximation errors EN = ‖TNf − Tf‖Y
for N = 1, 2, 3, . . . and extract a strictly decreasing subsequence
{ENk}. The algorithm terminates ifENk falls below a certain given
bound ε > 0. As a result, for any given f ∈ WT one obtains the
desired convergent subsequence {Nk(f)}.

However, it should be noted that the algorithm may not termi-
nate, namely if f /∈ WT, i.e. if f satisfies (3). A second difficulty
of Algorithm 1 is that the gap between two consecutive indices Nk
and Nk+1 can be arbitrary large. Then Algorithm 1 may run prac-
tically a very long time until it finds the correct subsequence. Since
the length of the search intervals are not bounded in this algorithm,
we speak of an algorithm with infinite search horizon in each step.

Methods with finite search horizon To overcome the described
problems of Algorithm 1, one introduces a criterion which guar-
antees that the search algorithm terminates after a reasonable time,
even if the error criterion is not satisfied. A practical realization
of such a procedure is described in Algorithm 2. The behavior of
the algorithm is determined by a predefined strictly increasing se-
quence {Sk}k∈N ⊂ N. For k = 1, 2, . . . , the algorithm observes
the approximation error ‖TNf − Tf‖Y for all N in the k-th inter-
val (Sk, Sk+1] and chooses the optimal index Nk according to (4).
If the approximation error (5) in step k is smaller than in preceding
step k − 1, we proceed in the same way with k + 1 until the ap-
proximation error falls below a desired bound ε. Otherwise, if in the
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interval (Sk, Sk+1] no improvement can be achieved, the algorithm
stops with an error, assuming that no convergent subsequence exists.

The sequence {Sk}k∈N determines the search horizon in every
step k. It is equal to the length of the interval (Sk, Sk+1]. For ex-
ample, we may choose Sk = k α with a certain α ∈ N. Then the
search horizon is equal to α for every k ∈ N. Alternatively, we may
choose Sk = αk. Then the search horizon increases exponentially
with k. In any case, the search horizon is always finite and the al-
gorithm terminates if it finds no improvement of the approximation
error on the predefined search intervals.

In contrast to Algorithm 1, Algorithm 2 may not be able to find
a convergent subsequence for all f ∈ WT since it may terminate
after the predefine number of steps although there exists a convergent
subsequence. However, we may expect that if the search intervals
(Sk, Sk+1] are sufficiently large then Algorithm 2 will fail only for
very few functions inWT.

Formal problem formulation The interesting question is now,
whether this intuition is correct and how large we have to choose
the search intervals (Sk, Sk+1] such that Algorithm 2 terminates
successfully for almost every f ∈ WT.

Formally, we investigate the following related problem.
Problem 1: Let {TN}N∈N be a weakly divergent approximation se-
quence of T ∈ L(X ,Y). Does there exist a strictly increasing se-
quence {Sk}k∈N ⊂ N such that for every f ∈ WT there is a subse-
quence {Nk(f)}k∈N such that for all k ∈ N we have

Nk ∈ (Sk, Sk+1] and sup
k∈N

∥∥TNk(f)f − Tf
∥∥
Y <∞ .

Remark: Note that Problem 1 only requires that the approximation
error remains bounded. We actually do not require that the error
goes to zero. So it is clear that if Problem 1 has no solution, then
there exist functions f ∈ WT such that Algorithm 2 fails in finding
a convergent subsequence {Nk(f)}k∈N such that (2) holds.

The following lemma can be used to check whether Problem 1 is
solvable or not. It is clear that Problem 1 has no solution if to every
strictly increasing sequence {Sk}k∈N ⊂ N there is an f ∈ X such
that for all sequences {Nk}k∈N with Nk ∈ (Sk, Sk+1] always

lim sup
k→∞

∥∥TNkf − Tf
∥∥
Y =∞ . (6)

More precisely, we have the following statement.
Lemma 1: Problem 1 has no solution if and only if to every strictly
increasing sequence {Sk}k∈N ⊂ N there exists an f ∈ X such that

lim sup
k→∞

(
min

N∈(Sk,Sk+1]

∥∥TNf − Tf
∥∥
Y

)
=∞ . (7)

Proof: It is obvious that Problem 1 is not solvable if (7) holds. Con-
versely, assume Problem 1 is not solvable and (7) is not satisfied. We
show hat this yields a contradiction. If (7) does not hold, then there
exists a strictly increasing sequence {S̃k}k∈N such that

lim sup
k→∞

min
N∈(S̃k,S̃k+1]

∥∥TNf − Tf
∥∥
Y <∞ for all f ∈ X .

So for any f ∈ X there is a sequence {Nk = Nk(f)}k∈N with
Nk ∈ (S̃k, S̃k+1] and such that for all k ∈ N∥∥TNkf − Tf

∥∥
Y = min

N∈(S̃k,S̃k+1]

∥∥TNf − Tf
∥∥
Y <∞ .

Thus supk∈N ‖TNkf − Tf‖Y < ∞. Since {Nk(f)}k∈N is strictly
increasing we solved Problem 1 and arrived at a contradiction.

4. THE SIZE OF THE DIVERGENCE SETS

Let {TN}N∈N be a weakly divergent approximation sequence of
T ∈ L(X ,Y). As we discussed in Section 3, approximation algo-
rithms with a finite search horizon may not be able to find a conver-
gent subsequence {Nk(f)}k∈N for every f ∈ WT. The question is
then for how many functions f ∈ X does the algorithm fail?

The non-adaptive method {TN}N∈N fails for a residual set in
X whereas Algorithm 1 with an infinite search horizon fails only
on a meager set. So we hope that the practical restriction to a finite
search horizon does not much increase the divergence set. However,
we will see that if an adaptive algorithm with a finite search horizon
fails for one f ∈ X then it will fail for a whole residual set in X .

To show this, we define the divergence set of all f ∈ X for
which Algorithm 2 will not be able to find a convergent subsequence.
Definition 2: Let S = {Sk}k∈N ⊂ N be an arbitrary strictly in-
creasing sequence, and denote byN (S) the set of all {Nk}k∈N ⊂ N
with Nk ∈ (Sk, Sk+1]. Then we define

D(S) :=
{
f ∈ X : for every {Nk}k∈N ∈ N (S) holds (6)

}
.

Theorem 2: If Problem 1 is not solvable thenD(S) is a residual set
in X for every strictly increasing sequence S = {Sk}k∈N ⊂ N.

So we have a similar behavior as for non-adaptive methods. If
there exists one function such that (6) is satisfied, then there exists
a whole residual set of X for which (6) holds, i.e. for which Algo-
rithm 2 fails. So an adaptive procedure with finite search horizon
gives basically no improvement compared to the non-adaptive pro-
cedure.

However, we emphasis that there exist weakly divergent approx-
imation sequence {TN}N for which Algorithm 2 succeeds for all
f ∈ X . So there are situations in which an adaptive method with
finite search horizon gives a substantial improvement compared to
the non-adaptive method.
Proof: Let {Sk}k∈N be given. For arbitrary k,M ∈ N, we consider
the sets D(k;M) which contain all f ∈ X such that∥∥TNf − Tf

∥∥
Y > M for all N ∈ (Sk, Sk+1] . (8)

It is easy to see that if D(k;M) is nonempty for some k,M ∈ N
then D(k;M) is an open set. For all K,M ∈ N, we define

D(K;M) =
⋃∞
k=K D(k;M) .

SinceD(K;M) is the union of countable many open sets, it is open.
We show thatD(K;M) is dense inX for allK,M ∈ N. Let f ∈ X
and ε > 0 be arbitrary. Since {TN}N∈N converges on a dense subset
X0 ⊂ X , there is ϕε ∈ X0 and N0 ∈ N such that ‖f − ϕε‖X < ε
and such that ‖TNϕε − Tϕε‖Y < ε/2 for all N ≥ N0. Since
Problem 1 is not solvable, there exists an f0 ∈ X with ‖f0‖X = 1
and such that

lim sup
k→∞

min
N∈(Sk,Sk+1]

∥∥TNf0 − Tf0
∥∥
Y =∞ . (9)

Now we define fε := ϕε+ ε
2
f0. It is easy to see that ‖f−fε‖X < ε.

Moreover, applying {TN}N∈N to fε, one obtains∥∥TNfε − Tfε
∥∥
Y ≥

ε
2

∥∥TNf0 − Tf0
∥∥
Y −

∥∥TNϕε − Tϕε
∥∥
Y

≥ ε
2

∥∥TNf0 − Tf0
∥∥
Y −

ε
2

for all N ≥ N0 .

Since f0 satisfies (9), there exists a k ≥ K such that Nk ≥ N0 and
such that ‖TNf0−Tf0‖Y ≥ 2M/ε+ 1 for some N ∈ (Sk, Sk+1].
Consequently, ‖TNfε−Tfε‖Y ≥M and therefore fε ∈ D(K;M).
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Next, we verify that D(S) =
⋂∞
K=1

⋂∞
M=1D(K;M). Indeed,

assume first f ∈
⋂∞
K=1

⋂∞
M=1D(K;M). Then for any arbitrary

K,M ∈ N, f ∈ D(K;M) and there is a k ≥ K such that (8)
holds, and so f ∈ D(S). Conversely, assume f ∈ D(S). Then to
every K,M ∈ N we can find a k ≥ K such that (8) is satisfied.
Thus f ∈ D(K;M) and since K,M can be chosen arbitrary, f ∈⋂∞
K=1

⋂∞
M=1D(K;M).

Each D(K;M) is open and dense in X , i.e. a residual set. The
countable intersection of residual sets is a residual set. Therefore
D1(N ) is a residual set in X .

5. HILBERT TRANSFORM

This section considers a particular example to illustrate the previous
discussions. More details on this example can be found in [12].

For 1 ≤ p ≤ ∞, let Lp(T) denote the usual set of Lebesgue
integrable functions on T = [−π, π). For any f ∈ L1(T), its conju-
gate function f̃ is given by the Hilbert transform Hf , i.e.

f̃(t) =
(
Hf
)
(t) = lim

ε→0

1

2π

∫
ε≤|τ |≤π

f(t− τ)

tan(τ/2)
dτ , (10)

where the limit on the right hand side exists for almost all t ∈ T
(see, e.g., [13, Sect. III.1]). This transformation plays a very impor-
tant role in many different areas of science and engineering, such as
signal processing, communications, control theory, physics [14, 15].

We consider the Hilbert transform H on the Banach space
B :=

{
f ∈ C(T) : f̃ = Hf ∈ C(T)

}
of all f ∈ C(T)

with a continuous conjugate f̃ = Hf , equipped with the norm
‖f‖B := max{‖f‖∞, ‖Hf‖∞}. So B is a proper subset of C(T).
For any f ∈ C(T), it conjugate f̃ belongs to any Lp(T) with
p < +∞. However, f̃ is not be bounded, in general. In particular,
the Hilbert transform of f ∈ C(T) is generally not continuous [13].

Hilbert transform from sampled data Our goal is to approxi-
mate the Hilbert transform (10) of f ∈ B by a sequence {HNf}∞N=1,
where HN ∈ L(B) is assumed to be based on a finite number of sam-
ples of f . This is a natural requirement in digital signal processing.
More precisely, we require that the sequence {HN}N∈N ⊂ L(B)
has the following three properties:

(A) Concentration on a finite sampling set: For every N ∈ N
there exists a finite set ΛN = {λn,N : n = 1, . . . ,MN} ⊂ T
such that for all f, g ∈ B

f(λ) = g(λ) for all λ ∈ ΛN

implies
(
HNf

)
(t) =

(
HNg

)
(t) for all t ∈ T .

(B) Convergence on a dense subset: {HN}N∈N ⊂ L(B) satisfies
limN→∞

∥∥HNf − f̃
∥∥
∞ = 0 for all f ∈ C∞(T), where

C∞(T) is the subset of infinitely differentiable f ∈ C(T).

(C) Generation by a sampling series: There exists a sequence
{AN}N∈N ⊂ L(B) such that limN→∞

∥∥ANf − f
∥∥
∞ = 0

for all f ∈ B and such that HNf = HANf for all N ∈ N .

Remark: Since the operators HN are linear, it follows that a se-
quence {HN}N∈N ⊂ L(B) has Property (A) if and only if to every
N ∈ N there exists a finite set ΛN =

{
λ1,N , . . . , λMN ,N

}
⊂ T

and functions {h1,N , . . . , hMn,N} ⊂ B such that

HNf =
∑MN
n=1 f(λn,N )hn,N for all f ∈ B .

It was shown in [2] that every sequence {HN}N∈N ∈ L(B) with
properties (A), (B), (C) shows a divergence behavior as in (1) on B.
It was conjectured later that any sequence {HN}N∈N with properties
(A), (B), (C) is also strongly divergent [16]. The interesting ques-
tion here is whether we can apply the adaptive Algorithm 2 to find
convergent subsequences {Nk(f)}k∈N such that TNkf converges to
Tf . Since we are interested in methods which can be implemented
in practice, we ask for methods with a finite search horizon.

The following theorem shows that the answer is actually neg-
ative, i.e. there exists no sampling based adaptive approximation
method for the Hilbert transform which can be realized in practice.
Theorem 3: Let {HN}N∈N ⊂ L(B) be a sequence with properties
(A)–(C), and let {Sk}k∈N ⊂ N be an arbitrary strictly increasing
sequences. There is a function f∗ ∈ B such that

lim sup
k→∞

min
N∈(Sk,Sk+1]

∥∥HNf∗
∥∥
∞ =∞ .

Sketch of proof: We apply a similar construction as in the proof of
[16, Theorem 7]. There we constructed f∗ ∈ B and two strictly
increasing sequences {N (1)

r }r∈N, {N (2)
r }r∈N ⊂ N with N (2)

r >

N
(1)
r and∥∥HNf∗

∥∥
∞ ≥ r − C0 for all N ∈ [N (1)

r , N (2)
r ]

for all r ∈ N and with a certain constant C0 > 0. Here we choose
the elements of the sequences {N (1)

r }r∈N and {N (2)
r }r∈N from the

given set {Sk}k∈N and not from N as in [16]. Then we define

N̂2r−1 := N (1)
r and N̂2r := N (2)

r for all r = 1, 2, 3, . . . .

This yields a strictly increasing subsequence {N̂r}r∈N of {Sk}k∈N
and by the construction of f∗ ∈ B, we have ‖HNf∗‖∞ ≥ r − C0

for all N ∈ [N̂r, N̂r+1] and for any r ∈ N. Consequently

lim
r→∞

min
N∈[N̂r,N̂r+1]

∥∥HNf∗
∥∥
∞ =∞ . (11)

Since {N̂r}r∈N is a subsequence of {Sk}k∈N, it is clear that to ev-
ery r ∈ N there exists a k(r) ∈ N such that (Sk(r), Sk(r)+1] ⊂
[N̂r, N̂r+1], and that

min
N∈[Sk(r),Sk(r)+1]

∥∥HNf∗
∥∥
∞ ≥ min

N∈(N̂r,N̂r+1]

∥∥HNf∗
∥∥
∞

for all r ∈ N. Together with (11), this proves the theorem.

Theorem 3 shows that there are functions f ∈ B such that the
norm ‖HNf‖∞ of any sampling based linear approximation HNf
exceeds any given bound for any given number of sufficiently large
consecutive approximation indices N . So no matter how large we
choose the length of the search intervals (Sk, Sk+1] in Algorithm 2,
there always exist functions f ∈ B for which the algorithm fails.
Together with Theorem 2 we obtain the following statement.
Corollary 4: Let {HN}N∈N ⊂ L(B) be a weakly divergent approx-
imation sequence of H with properties (A), (B), (C). Then Problem 1
is not solvable and the corresponding divergence set D(S) is resid-
ual in B for every strictly increasing sequence S = {Sk}k∈N.

So Corollary 4 shows that there exist no sampling based adap-
tive approximation method with finite search horizon for the Hilbert
transform. Nevertheless, we note that if we allow for an infinite
search horizon, then there exist adaptive methods which convergence
for all function in a residual subset of B.
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